Namespaces
Variants
Actions

std::ranges::is_permutation

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges(C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
is_permutation
    
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template<std::forward_iterator I1, std::sentinel_for<I1> S1,

          std::forward_iterator I2, std::sentinel_for<I2> S2,
          class Proj1 =std::identity, class Proj2 =std::identity,
          std::indirect_equivalence_relation<std::projected<I1, Proj1>,
                                             std::projected<I2, Proj2>>
                                                 Pred =ranges::equal_to>
constexprbool
    is_permutation( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred ={},

                    Proj1 proj1 ={}, Proj2 proj2 ={});
(1) (since C++20)
template<ranges::forward_range R1, ranges::forward_range R2,

          class Proj1 =std::identity, class Proj2 =std::identity,
          std::indirect_equivalence_relation<
              std::projected<ranges::iterator_t<R1>, Proj1>,
              std::projected<ranges::iterator_t<R2>, Proj2>>
                  Pred =ranges::equal_to>
constexprbool
    is_permutation( R1&& r1, R2&& r2, Pred pred ={},

                    Proj1 proj1 ={}, Proj2 proj2 ={});
(2) (since C++20)
1) Returns true if there exists a permutation of the elements in range [first1last1) that makes the range equal to [first2last2) (after application of corresponding projections Proj1, Proj2, and using the binary predicate Pred as a comparator). Otherwise returns false.
2) Same as (1), but uses r1 as the first source range and r2 as the second source range, as if using ranges::begin(r1) as first1, ranges::end(r1) as last1, ranges::begin(r2) as first2, and ranges::end(r2) as last2.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit]Parameters

first1, last1 - the iterator-sentinel pair defining the first range of elements
first2, last2 - the iterator-sentinel pair defining the second range of elements
r1 - the first range of the elements
r2 - the second range of the elements
pred - predicate to apply to the projected elements
proj1 - projection to apply to the elements in the first range
proj2 - projection to apply to the elements in the second range

[edit]Return value

true if the range [first1last1) is a permutation of the range [first2last2).

[edit]Complexity

At most O(N2) applications of the predicate and each projection, or exactly N if the sequences are already equal, where N is ranges::distance(first1, last1). However if ranges::distance(first1, last1)!=ranges::distance(first2, last2), no applications of the predicate and projections are made.

[edit]Notes

The permutation relation is an equivalence relation.

The ranges::is_permutation can be used in testing, e.g. to check the correctness of rearranging algorithms such as sorting, shuffling, partitioning. If p is an original sequence and q is a "mutated" sequence, then ranges::is_permutation(p, q)==true means that q consist of "the same" elements (maybe permuted) as p.

[edit]Possible implementation

struct is_permutation_fn {template<std::forward_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, class Proj1 =std::identity, class Proj2 =std::identity, std::indirect_equivalence_relation<std::projected<I1, Proj1>, std::projected<I2, Proj2>> Pred =ranges::equal_to>constexprbool operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred ={}, Proj1 proj1 ={}, Proj2 proj2 ={})const{// skip common prefixauto ret = std::ranges::mismatch(first1, last1, first2, last2, std::ref(pred), std::ref(proj1), std::ref(proj2)); first1 = ret.in1, first2 = ret.in2;   // iterate over the rest, counting how many times each element// from [first1, last1) appears in [first2, last2)for(auto i {first1}; i != last1;++i){constauto i_proj {std::invoke(proj1, *i)};auto i_cmp =[&]<typename T>(T&& t){returnstd::invoke(pred, i_proj, std::forward<T>(t));};   if(i !=ranges::find_if(first1, i, i_cmp, proj1))continue;// this *i has been checked   if(constauto m {ranges::count_if(first2, last2, i_cmp, proj2)}; m ==0 or m !=ranges::count_if(i, last1, i_cmp, proj1))returnfalse;}returntrue;}   template<ranges::forward_range R1, ranges::forward_range R2, class Proj1 =std::identity, class Proj2 =std::identity, std::indirect_equivalence_relation< std::projected<ranges::iterator_t<R1>, Proj1>, std::projected<ranges::iterator_t<R2>, Proj2>> Pred =ranges::equal_to>constexprbool operator()(R1&& r1, R2&& r2, Pred pred ={}, Proj1 proj1 ={}, Proj2 proj2 ={})const{return(*this)(ranges::begin(r1), ranges::end(r1), ranges::begin(r2), ranges::end(r2), std::move(pred), std::move(proj1), std::move(proj2));}};   inlineconstexpr is_permutation_fn is_permutation {};

[edit]Example

#include <algorithm>#include <array>#include <cmath>#include <iostream>#include <ranges>   auto& operator<<(auto& os, std::ranges::forward_rangeautoconst& v){ os <<"{ ";for(constauto& e : v) os << e <<' ';return os <<"}";}   int main(){staticconstexprauto r1 ={1, 2, 3, 4, 5};staticconstexprauto r2 ={3, 5, 4, 1, 2};staticconstexprauto r3 ={3, 5, 4, 1, 1};   static_assert( std::ranges::is_permutation(r1, r1)&& std::ranges::is_permutation(r1, r2)&& std::ranges::is_permutation(r2, r1)&& std::ranges::is_permutation(r1.begin(), r1.end(), r2.begin(), r2.end()));   std::cout<<std::boolalpha<<"is_permutation("<< r1 <<", "<< r2 <<"): "<< std::ranges::is_permutation(r1, r2)<<'\n'<<"is_permutation("<< r1 <<", "<< r3 <<"): "<< std::ranges::is_permutation(r1, r3)<<'\n'   <<"is_permutation with custom predicate and projections: "<< std::ranges::is_permutation(std::array{-14, -11, -13, -15, -12}, // 1st rangestd::array{'F', 'E', 'C', 'B', 'D'}, // 2nd range[](int x, int y){return abs(x)== abs(y);}, // predicate[](int x){return x +10;}, // projection for 1st range[](char y){returnint(y -'A');})// projection for 2nd range<<'\n';}

Output:

is_permutation({ 1 2 3 4 5 }, { 3 5 4 1 2 }): true is_permutation({ 1 2 3 4 5 }, { 3 5 4 1 1 }): false is_permutation with custom predicate and projections: true

[edit]See also

generates the next greater lexicographic permutation of a range of elements
(algorithm function object)[edit]
generates the next smaller lexicographic permutation of a range of elements
(algorithm function object)[edit]
determines if a sequence is a permutation of another sequence
(function template)[edit]
generates the next greater lexicographic permutation of a range of elements
(function template)[edit]
generates the next smaller lexicographic permutation of a range of elements
(function template)[edit]
specifies that a relation imposes an equivalence relation
(concept)[edit]
close