std::ranges::is_permutation
Defined in header <algorithm> | ||
Call signature | ||
template<std::forward_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, | (1) | (since C++20) |
template<ranges::forward_range R1, ranges::forward_range R2, class Proj1 =std::identity, class Proj2 =std::identity, | (2) | (since C++20) |
[
first1,
last1)
that makes the range equal to [
first2,
last2)
(after application of corresponding projections Proj1, Proj2, and using the binary predicate Pred as a comparator). Otherwise returns false.The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first1, last1 | - | the iterator-sentinel pair defining the first range of elements |
first2, last2 | - | the iterator-sentinel pair defining the second range of elements |
r1 | - | the first range of the elements |
r2 | - | the second range of the elements |
pred | - | predicate to apply to the projected elements |
proj1 | - | projection to apply to the elements in the first range |
proj2 | - | projection to apply to the elements in the second range |
[edit]Return value
true if the range [
first1,
last1)
is a permutation of the range [
first2,
last2)
.
[edit]Complexity
At most O(N2) applications of the predicate and each projection, or exactly N if the sequences are already equal, where N is ranges::distance(first1, last1). However if ranges::distance(first1, last1)!=ranges::distance(first2, last2), no applications of the predicate and projections are made.
[edit]Notes
The permutation relation is an equivalence relation.
The ranges::is_permutation
can be used in testing, e.g. to check the correctness of rearranging algorithms such as sorting, shuffling, partitioning. If p
is an original sequence and q
is a "mutated" sequence, then ranges::is_permutation(p, q)==true means that q
consist of "the same" elements (maybe permuted) as p
.
[edit]Possible implementation
struct is_permutation_fn {template<std::forward_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, class Proj1 =std::identity, class Proj2 =std::identity, std::indirect_equivalence_relation<std::projected<I1, Proj1>, std::projected<I2, Proj2>> Pred =ranges::equal_to>constexprbool operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred ={}, Proj1 proj1 ={}, Proj2 proj2 ={})const{// skip common prefixauto ret = std::ranges::mismatch(first1, last1, first2, last2, std::ref(pred), std::ref(proj1), std::ref(proj2)); first1 = ret.in1, first2 = ret.in2; // iterate over the rest, counting how many times each element// from [first1, last1) appears in [first2, last2)for(auto i {first1}; i != last1;++i){constauto i_proj {std::invoke(proj1, *i)};auto i_cmp =[&]<typename T>(T&& t){returnstd::invoke(pred, i_proj, std::forward<T>(t));}; if(i !=ranges::find_if(first1, i, i_cmp, proj1))continue;// this *i has been checked if(constauto m {ranges::count_if(first2, last2, i_cmp, proj2)}; m ==0 or m !=ranges::count_if(i, last1, i_cmp, proj1))returnfalse;}returntrue;} template<ranges::forward_range R1, ranges::forward_range R2, class Proj1 =std::identity, class Proj2 =std::identity, std::indirect_equivalence_relation< std::projected<ranges::iterator_t<R1>, Proj1>, std::projected<ranges::iterator_t<R2>, Proj2>> Pred =ranges::equal_to>constexprbool operator()(R1&& r1, R2&& r2, Pred pred ={}, Proj1 proj1 ={}, Proj2 proj2 ={})const{return(*this)(ranges::begin(r1), ranges::end(r1), ranges::begin(r2), ranges::end(r2), std::move(pred), std::move(proj1), std::move(proj2));}}; inlineconstexpr is_permutation_fn is_permutation {}; |
[edit]Example
#include <algorithm>#include <array>#include <cmath>#include <iostream>#include <ranges> auto& operator<<(auto& os, std::ranges::forward_rangeautoconst& v){ os <<"{ ";for(constauto& e : v) os << e <<' ';return os <<"}";} int main(){staticconstexprauto r1 ={1, 2, 3, 4, 5};staticconstexprauto r2 ={3, 5, 4, 1, 2};staticconstexprauto r3 ={3, 5, 4, 1, 1}; static_assert( std::ranges::is_permutation(r1, r1)&& std::ranges::is_permutation(r1, r2)&& std::ranges::is_permutation(r2, r1)&& std::ranges::is_permutation(r1.begin(), r1.end(), r2.begin(), r2.end())); std::cout<<std::boolalpha<<"is_permutation("<< r1 <<", "<< r2 <<"): "<< std::ranges::is_permutation(r1, r2)<<'\n'<<"is_permutation("<< r1 <<", "<< r3 <<"): "<< std::ranges::is_permutation(r1, r3)<<'\n' <<"is_permutation with custom predicate and projections: "<< std::ranges::is_permutation(std::array{-14, -11, -13, -15, -12}, // 1st rangestd::array{'F', 'E', 'C', 'B', 'D'}, // 2nd range[](int x, int y){return abs(x)== abs(y);}, // predicate[](int x){return x +10;}, // projection for 1st range[](char y){returnint(y -'A');})// projection for 2nd range<<'\n';}
Output:
is_permutation({ 1 2 3 4 5 }, { 3 5 4 1 2 }): true is_permutation({ 1 2 3 4 5 }, { 3 5 4 1 1 }): false is_permutation with custom predicate and projections: true
[edit]See also
(C++20) | generates the next greater lexicographic permutation of a range of elements (algorithm function object) |
(C++20) | generates the next smaller lexicographic permutation of a range of elements (algorithm function object) |
(C++11) | determines if a sequence is a permutation of another sequence (function template) |
generates the next greater lexicographic permutation of a range of elements (function template) | |
generates the next smaller lexicographic permutation of a range of elements (function template) | |
(C++20) | specifies that a relation imposes an equivalence relation (concept) |