std::partition_point
Defined in header <algorithm> | ||
template<class ForwardIt, class UnaryPred > ForwardIt partition_point( ForwardIt first, ForwardIt last, UnaryPred p ); | (since C++11) (constexpr since C++20) | |
Examines the partitioned range [
first,
last)
and locates the end of the first partition, that is, the first element that does not satisfy p or last if all elements satisfy p.
If the elements elem of [
first,
last)
are not partitioned with respect to the expression bool(p(elem)), the behavior is undefined.
Contents |
[edit]Parameters
first, last | - | the pair of iterators defining the partitioned range of elements to examine |
p | - | unary predicate which returns true for the elements found in the beginning of the range. The expression p(v) must be convertible to bool for every argument |
Type requirements | ||
-ForwardIt must meet the requirements of LegacyForwardIterator. | ||
-UnaryPred must meet the requirements of Predicate. |
[edit]Return value
The iterator past the end of the first partition within [
first,
last)
or last if all elements satisfy p.
[edit]Complexity
Given N as std::distance(first, last), performs O(log(N)) applications of the predicate p.
[edit]Notes
This algorithm is a more general form of std::lower_bound, which can be expressed in terms of std::partition_point
with the predicate [&](constauto& e){return e < value;});.
[edit]Possible implementation
template<class ForwardIt, class UnaryPred>constexpr//< since C++20 ForwardIt partition_point(ForwardIt first, ForwardIt last, UnaryPred p){for(auto length =std::distance(first, last);0< length;){auto half = length /2;auto middle =std::next(first, half);if(p(*middle)){ first =std::next(middle); length -=(half +1);}else length = half;} return first;} |
[edit]Example
#include <algorithm>#include <array>#include <iostream>#include <iterator> auto print_seq =[](auto rem, auto first, auto last){for(std::cout<< rem; first != last;std::cout<<*first++<<' '){}std::cout<<'\n';}; int main(){std::array v{1, 2, 3, 4, 5, 6, 7, 8, 9}; auto is_even =[](int i){return i %2==0;}; std::partition(v.begin(), v.end(), is_even); print_seq("After partitioning, v: ", v.cbegin(), v.cend()); constauto pp = std::partition_point(v.cbegin(), v.cend(), is_even);constauto i =std::distance(v.cbegin(), pp);std::cout<<"Partition point is at "<< i <<"; v["<< i <<"] = "<<*pp <<'\n'; print_seq("First partition (all even elements): ", v.cbegin(), pp); print_seq("Second partition (all odd elements): ", pp, v.cend());}
Possible output:
After partitioning, v: 8 2 6 4 5 3 7 1 9 Partition point is at 4; v[4] = 5 First partition (all even elements): 8 2 6 4 Second partition (all odd elements): 5 3 7 1 9
[edit]See also
(C++11) | finds the first element satisfying specific criteria (function template) |
(C++11) | checks whether a range is sorted into ascending order (function template) |
returns an iterator to the first element not less than the given value (function template) | |
(C++20) | locates the partition point of a partitioned range (algorithm function object) |