Namespaces
Variants
Actions

std::ranges::next_permutation, std::ranges::next_permutation_result

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges(C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
next_permutation
  
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template<std::bidirectional_iterator I, std::sentinel_for<I> S,

          class Comp =ranges::less, class Proj =std::identity>
requires std::sortable<I, Comp, Proj>
constexpr next_permutation_result<I>

    next_permutation( I first, S last, Comp comp ={}, Proj proj ={});
(1) (since C++20)
template<ranges::bidirectional_range R, class Comp =ranges::less,

          class Proj =std::identity>
requires std::sortable<ranges::iterator_t<R>, Comp, Proj>
constexpr next_permutation_result<ranges::borrowed_iterator_t<R>>

    next_permutation( R&& r, Comp comp ={}, Proj proj ={});
(2) (since C++20)
Helper type
template<class I >
using next_permutation_result =ranges::in_found_result<I>;
(3) (since C++20)
1) Transforms the range [firstlast) into the next permutation, where the set of all permutations is ordered lexicographically with respect to binary comparison function object comp and projection function object proj. Returns {last, true} if such a "next permutation" exists; otherwise transforms the range into the lexicographically first permutation as if by ranges::sort(first, last, comp, proj), and returns {last, false}.
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first, and ranges::end(r) as last.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit]Parameters

first, last - the iterator-sentinel pair defining the range of elements to permute
r - the range of elements to permute
comp - comparison FunctionObject which returns true if the first argument is less than the second
proj - projection to apply to the elements

[edit]Return value

1)ranges::next_permutation_result<I>{last, true} if the new permutation is lexicographically greater than the old one. ranges::next_permutation_result<I>{last, false} if the last permutation was reached and the range was reset to the first permutation.
2) Same as (1) except that the return type is ranges::next_permutation_result<ranges::borrowed_iterator_t<R>>.

[edit]Exceptions

Any exceptions thrown from iterator operations or the element swap.

[edit]Complexity

At most N / 2 swaps, where N is ranges::distance(first, last) in case (1) or ranges::distance(r) in case (2). Averaged over the entire sequence of permutations, typical implementations use about 3 comparisons and 1.5 swaps per call.

[edit]Notes

Implementations (e.g. MSVC STL) may enable vectorization when the iterator type models contiguous_iterator and swapping its value type calls neither non-trivial special member function nor ADL-found swap.

[edit]Possible implementation

struct next_permutation_fn {template<std::bidirectional_iterator I, std::sentinel_for<I> S, class Comp =ranges::less, class Proj =std::identity> requires std::sortable<I, Comp, Proj>constexpr ranges::next_permutation_result<I> operator()(I first, S last, Comp comp ={}, Proj proj ={})const{// check that the sequence has at least two elementsif(first == last)return{std::move(first), false}; I i_last{ranges::next(first, last)}; I i{i_last};if(first ==--i)return{std::move(i_last), false};// main "permutating" loopfor(;;){ I i1{i};if(std::invoke(comp, std::invoke(proj, *--i), std::invoke(proj, *i1))){ I j{i_last};while(!std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *--j))){}std::iter_swap(i, j);std::reverse(i1, i_last);return{std::move(i_last), true};}// permutation "space" is exhaustedif(i == first){std::reverse(first, i_last);return{std::move(i_last), false};}}}   template<ranges::bidirectional_range R, class Comp =ranges::less, class Proj =std::identity> requires std::sortable<ranges::iterator_t<R>, Comp, Proj>constexpr ranges::next_permutation_result<ranges::borrowed_iterator_t<R>> operator()(R&& r, Comp comp ={}, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj));}};   inlineconstexpr next_permutation_fn next_permutation {};

[edit]Example

#include <algorithm>#include <array>#include <compare>#include <functional>#include <iostream>#include <string>   struct S {char c;int i;auto operator<=>(const S&)const=default;friendstd::ostream& operator<<(std::ostream& os, const S& s){return os <<"{'"<< s.c<<"', "<< s.i<<"}";}};   auto print =[](autoconst& v, char term =' '){std::cout<<"{ ";for(constauto& e : v)std::cout<< e <<' ';std::cout<<'}'<< term;};   int main(){std::cout<<"Generate all permutations (iterators case):\n";std::string s{"abc"};do{ print(s);}while(std::ranges::next_permutation(s.begin(), s.end()).found);   std::cout<<"\n""Generate all permutations (range case):\n";std::array a{'a', 'b', 'c'};do{ print(a);}while(std::ranges::next_permutation(a).found);   std::cout<<"\n""Generate all permutations using comparator:\n";usingnamespace std::literals;std::array z{"█"s, "▄"s, "▁"s};do{ print(z);}while(std::ranges::next_permutation(z, std::greater()).found);   std::cout<<"\n""Generate all permutations using projection:\n";std::array<S, 3> r{S{'A',3}, S{'B',2}, S{'C',1}};do{ print(r, '\n');}while(std::ranges::next_permutation(r, {}, &S::c).found);}

Output:

Generate all permutations (iterators case): { a b c } { a c b } { b a c } { b c a } { c a b } { c b a } Generate all permutations (range case): { a b c } { a c b } { b a c } { b c a } { c a b } { c b a } Generate all permutations using comparator: { █ ▄ ▁ } { █ ▁ ▄ } { ▄ █ ▁ } { ▄ ▁ █ } { ▁ █ ▄ } { ▁ ▄ █ } Generate all permutations using projection: { {'A', 3} {'B', 2} {'C', 1} } { {'A', 3} {'C', 1} {'B', 2} } { {'B', 2} {'A', 3} {'C', 1} } { {'B', 2} {'C', 1} {'A', 3} } { {'C', 1} {'A', 3} {'B', 2} } { {'C', 1} {'B', 2} {'A', 3} }

[edit]See also

generates the next smaller lexicographic permutation of a range of elements
(algorithm function object)[edit]
determines if a sequence is a permutation of another sequence
(algorithm function object)[edit]
generates the next greater lexicographic permutation of a range of elements
(function template)[edit]
generates the next smaller lexicographic permutation of a range of elements
(function template)[edit]
determines if a sequence is a permutation of another sequence
(function template)[edit]
close