std::ranges::is_sorted_until
Defined in header <algorithm> | ||
Call signature | ||
template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, | (1) | (since C++20) |
template<std::forward_range R, class Proj =std::identity, std::indirect_strict_weak_order< | (2) | (since C++20) |
Examines the range [
first,
last)
and finds the largest range beginning at first in which the elements are sorted in non-descending order.
A sequence is sorted with respect to a comparator comp if for any iterator it
pointing to the sequence and any non-negative integer n
such that it + n
is a valid iterator pointing to an element of the sequence, std::invoke(comp, std::invoke(proj, *(it + n)), std::invoke(proj, *it)) evaluates to false.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first, last | - | the iterator-sentinel pair defining the range of elements to find its sorted upper bound |
r | - | the range to find its sorted upper bound |
comp | - | comparison function to apply to the projected elements |
proj | - | projection to apply to the elements |
[edit]Return value
The upper bound of the largest range beginning at first in which the elements are sorted in non-descending order. That is, the last iterator it
for which range [
first,
it)
is sorted.
[edit]Complexity
Linear in the distance between first and last.
[edit]Possible implementation
struct is_sorted_until_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirect_strict_weak_order<std::projected<I, Proj>> Comp =ranges::less>constexpr I operator()(I first, S last, Comp comp ={}, Proj proj ={})const{if(first == last)return first; for(auto next = first;++next != last; first = next)if(std::invoke(comp, std::invoke(proj, *next), std::invoke(proj, *first)))return next; return first;} template<ranges::forward_range R, class Proj =std::identity, std::indirect_strict_weak_order< std::projected<ranges::iterator_t<R>, Proj>> Comp =ranges::less>constexprranges::borrowed_iterator_t<R> operator()(R&& r, Comp comp ={}, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), std::ref(comp), std::ref(proj));}}; inlineconstexpr is_sorted_until_fn is_sorted_until; |
[edit]Notes
ranges::is_sorted_until
returns an iterator equal to last for empty ranges and ranges of length one.
[edit]Example
#include <array>#include <algorithm>#include <iostream>#include <iterator>#include <random> int main(){std::random_device rd;std::mt19937 g {rd()};std::array nums {3, 1, 4, 1, 5, 9}; constexprint min_sorted_size =4;int sorted_size =0;do{ std::ranges::shuffle(nums, g);constauto sorted_end = std::ranges::is_sorted_until(nums); sorted_size = std::ranges::distance(nums.begin(), sorted_end); std::ranges::copy(nums, std::ostream_iterator<int>(std::cout, " "));std::cout<<" : "<< sorted_size <<" leading sorted element(s)\n";}while(sorted_size < min_sorted_size);}
Possible output:
4 1 9 5 1 3 : 1 leading sorted element(s) 4 5 9 3 1 1 : 3 leading sorted element(s) 9 3 1 4 5 1 : 1 leading sorted element(s) 1 3 5 4 1 9 : 3 leading sorted element(s) 5 9 1 1 3 4 : 2 leading sorted element(s) 4 9 1 5 1 3 : 2 leading sorted element(s) 1 1 4 9 5 3 : 4 leading sorted element(s)
[edit]See also
(C++20) | checks whether a range is sorted into ascending order (algorithm function object) |
(C++11) | finds the largest sorted subrange (function template) |