std::ranges::for_each, std::ranges::for_each_result
Defined in header <algorithm> | ||
Call signature | ||
template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirectly_unary_invocable<std::projected<I, Proj>> Fun > | (1) | (since C++20) |
template<ranges::input_range R, class Proj =std::identity, std::indirectly_unary_invocable< | (2) | (since C++20) |
Helper types | ||
template<class I, class F > using for_each_result =ranges::in_fun_result<I, F>; | (3) | (since C++20) |
[
first,
last)
, in order. For both overloads, if the iterator type is mutable, f may modify the elements of the range through the dereferenced iterator. If f returns a result, the result is ignored.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first, last | - | the iterator-sentinel pair defining the range of elements to apply the function to |
r | - | the range of elements to apply the function to |
f | - | the function to apply to the projected range |
proj | - | projection to apply to the elements |
[edit]Return value
{ranges::next(std::move(first), last), std::move(f)}
[edit]Complexity
Exactly ranges::distance(first, last) applications of f and proj.
[edit]Possible implementation
struct for_each_fn {template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirectly_unary_invocable<std::projected<I, Proj>> Fun>constexpr ranges::for_each_result<I, Fun> operator()(I first, S last, Fun f, Proj proj ={})const{for(; first != last;++first)std::invoke(f, std::invoke(proj, *first));return{std::move(first), std::move(f)};} template<ranges::input_range R, class Proj =std::identity, std::indirectly_unary_invocable<std::projected<ranges::iterator_t<R>, Proj>> Fun>constexpr ranges::for_each_result<ranges::borrowed_iterator_t<R>, Fun> operator()(R&& r, Fun f, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), std::move(f), std::ref(proj));}}; inlineconstexpr for_each_fn for_each; |
[edit]Example
The following example uses a lambda expression to increment all of the elements of a vector and then uses an overloaded operator()
in a functor to compute their sum. Note that to compute the sum, it is recommended to use the dedicated algorithm std::accumulate.
#include <algorithm>#include <cassert>#include <iostream>#include <string>#include <utility>#include <vector> struct Sum {void operator()(int n){ sum += n;}int sum {0};}; int main(){std::vector<int> nums {3, 4, 2, 8, 15, 267}; auto print =[](constauto& n){std::cout<<' '<< n;}; namespace ranges = std::ranges;std::cout<<"before:"; ranges::for_each(std::as_const(nums), print); print('\n'); ranges::for_each(nums, [](int& n){++n;}); // calls Sum::operator() for each numberauto[i, s]= ranges::for_each(nums.begin(), nums.end(), Sum());assert(i == nums.end()); std::cout<<"after: "; ranges::for_each(nums.cbegin(), nums.cend(), print); std::cout<<"\n""sum: "<< s.sum<<'\n'; using pair =std::pair<int, std::string>;std::vector<pair> pairs {{1,"one"}, {2,"two"}, {3,"tree"}}; std::cout<<"project the pair::first: "; ranges::for_each(pairs, print, [](const pair& p){return p.first;}); std::cout<<"\n""project the pair::second:"; ranges::for_each(pairs, print, &pair::second); print('\n');}
Output:
before: 3 4 2 8 15 267 after: 4 5 3 9 16 268 sum: 305 project the pair::first: 1 2 3 project the pair::second: one two tree
[edit]See also
range-for loop(C++11) | executes loop over range |
(C++20) | applies a function to a range of elements (algorithm function object) |
(C++20) | applies a function object to the first N elements of a sequence (algorithm function object) |
applies a unary function object to elements from a range (function template) |