Namespaces
Variants
Actions

std::ranges::fold_left_first

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges(C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
(C++23)
fold_left_first
(C++23)  
(C++23)
(C++23)  
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template<std::input_iterator I, std::sentinel_for<I> S,

          /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F >
requires std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
constexprauto

    fold_left_first( I first, S last, F f );
(1) (since C++23)
template<ranges::input_range R,

          /*indirectly-binary-left-foldable*/<
                ranges::range_value_t<R>, ranges::iterator_t<R>> F >
requires std::constructible_from<
             ranges::range_value_t<R>, ranges::range_reference_t<R>>
constexprauto

    fold_left_first( R&& r, F f );
(2) (since C++23)
Helper concepts
template<class F, class T, class I >
concept /*indirectly-binary-left-foldable*/=/* see description */;
(3) (exposition only*)

Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(f(f(f(x1, x2), x3), ...), xn), where x1, x2, ..., xn are elements of the range.

Informally, ranges::fold_left_first behaves like std::accumulate's overload that accepts a binary predicate, except that the *first is used internally as an initial element.

The behavior is undefined if [firstlast) is not a valid range.

1) The range is [firstlast). Equivalent to returnranges::fold_left_first_with_iter(std::move(first), last, f).value.
2) Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.
3) Equivalent to:
Helper concepts
template<class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/=
    std::movable<T>&&
    std::movable<U>&&
    std::convertible_to<T, U>&&
    std::invocable<F&, U, std::iter_reference_t<I>>&&
    std::assignable_from<U&,

        std::invoke_result_t<F&, U, std::iter_reference_t<I>>>;
(3A) (exposition only*)
template<class F, class T, class I >

concept /*indirectly-binary-left-foldable*/=
    std::copy_constructible<F>&&
    std::indirectly_readable<I>&&
    std::invocable<F&, T, std::iter_reference_t<I>>&&
    std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>,
        std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>&&
    /*indirectly-binary-left-foldable-impl*/<F, T, I,

        std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>;
(3B) (exposition only*)

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit]Parameters

first, last - the iterator-sentinel pair defining the range of elements to fold
r - the range of elements to fold
f - the binary function object

[edit]Return value

An object of type std::optional<U> that contains the result of left-fold of the given range over f, where U is equivalent to decltype(ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f)).

If the range is empty, std::optional<U>() is returned.

[edit]Possible implementations

struct fold_left_first_fn {template<std::input_iterator I, std::sentinel_for<I> S, /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F> requires std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>constexprauto operator()(I first, S last, F f)const{using U = decltype(ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f));if(first == last)returnstd::optional<U>();std::optional<U> init(std::in_place, *first);for(++first; first != last;++first)*init =std::invoke(f, std::move(*init), *first);return std::move(init);}   template<ranges::input_range R, /*indirectly-binary-left-foldable*/<ranges::range_value_t<R>, ranges::iterator_t<R>> F> requires std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>constexprauto operator()(R&& r, F f)const{return(*this)(ranges::begin(r), ranges::end(r), std::ref(f));}};   inlineconstexpr fold_left_first_fn fold_left_first;

[edit]Complexity

Exactly ranges::distance(first, last)-1 (assuming the range is not empty) applications of the function object f.

[edit]Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_leftleftinitU
ranges::fold_left_firstleftfirst elementstd::optional<U>
ranges::fold_rightrightinitU
ranges::fold_right_lastrightlast elementstd::optional<U>
ranges::fold_left_with_iterleftinit

(1) ranges::in_value_result<I, U>

(2) ranges::in_value_result<BR, U>,

where BR is ranges::borrowed_iterator_t<R>

ranges::fold_left_first_with_iterleftfirst element

(1) ranges::in_value_result<I, std::optional<U>>

(2) ranges::in_value_result<BR, std::optional<U>>

where BR is ranges::borrowed_iterator_t<R>

Feature-test macroValueStdFeature
__cpp_lib_ranges_fold202207L(C++23)std::rangesfold algorithms

[edit]Example

#include <algorithm>#include <array>#include <functional>#include <ranges>#include <utility>   int main(){constexprstd::array v{1, 2, 3, 4, 5, 6, 7, 8}; static_assert (*std::ranges::fold_left_first(v.begin(), v.end(), std::plus{})==36&&*std::ranges::fold_left_first(v, std::multiplies{})==40320);   constexprstd::array w {1, 2, 3, 4, 13, 1, 2, 3, 4, 13, 1, 2, 3, 4, 13, 1, 2, 3, 4, }; static_assert ("Find the only value that (by precondition) occurs odd number of times:"&&*std::ranges::fold_left_first(w, [](int p, int q){return p ^ q;})==13);   constexprauto pairs =std::to_array<std::pair<char, float>>({{'A', 3.0f}, {'B', 3.5f}, {'C', 4.0f}}); static_assert ("Get the product of all pair::second in pairs:"&&*std::ranges::fold_left_first( pairs | std::ranges::views::values, std::multiplies{})==42);}

[edit]References

  • C++23 standard (ISO/IEC 14882:2024):
  • 27.6.18 Fold [alg.fold]

[edit]See also

left-folds a range of elements
(algorithm function object)[edit]
right-folds a range of elements
(algorithm function object)[edit]
right-folds a range of elements using the last element as an initial value
(algorithm function object)[edit]
left-folds a range of elements, and returns a pair (iterator, value)
(algorithm function object)[edit]
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)
(algorithm function object)[edit]
sums up or folds a range of elements
(function template)[edit]
(C++17)
similar to std::accumulate, except out of order
(function template)[edit]
close