std::ranges::count, std::ranges::count_if
Defined in header <algorithm> | ||
Call signature | ||
(1) | ||
template<std::input_iterator I, std::sentinel_for<I> S, class T, class Proj =std::identity> | (since C++20) (until C++26) | |
template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, | (since C++26) | |
(2) | ||
template<ranges::input_range R, class T, class Proj =std::identity> requires std::indirect_binary_predicate | (since C++20) (until C++26) | |
template<ranges::input_range R, class Proj =std::identity, class T = std::projected_value_t<ranges::iterator_t<R>, Proj>> | (since C++26) | |
template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, | (3) | (since C++20) |
template<ranges::input_range R, class Proj =std::identity, std::indirect_unary_predicate< | (4) | (since C++20) |
Returns the number of elements in the range [
first,
last)
satisfying specific criteria.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first, last | - | the iterator-sentinel pair defining the range of elements to examine |
r | - | the range of the elements to examine |
value | - | the value to search for |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
[edit]Return value
Number of elements satisfying the condition.
[edit]Complexity
Exactly last - first comparisons and projection.
[edit]Notes
For the number of elements in the range without any additional criteria, see std::ranges::distance.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_algorithm_default_value_type | 202403 | (C++26) | List-initialization for algorithms (1,2) |
[edit]Possible implementation
count (1) |
---|
struct count_fn {template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, class T = std::projected_value_t<I, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*>constexprstd::iter_difference_t<I> operator()(I first, S last, const T& value, Proj proj ={})const{std::iter_difference_t<I> counter =0;for(; first != last;++first)if(std::invoke(proj, *first)== value)++counter;return counter;} template<ranges::input_range R, class Proj =std::identityclass T = std::projected_value_t<ranges::iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*>constexprranges::range_difference_t<R> operator()(R&& r, const T& value, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj));}}; inlineconstexpr count_fn count; |
count_if (3) |
struct count_if_fn {template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred>constexprstd::iter_difference_t<I> operator()(I first, S last, Pred pred, Proj proj ={})const{std::iter_difference_t<I> counter =0;for(; first != last;++first)if(std::invoke(pred, std::invoke(proj, *first)))++counter;return counter;} template<ranges::input_range R, class Proj =std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred>constexprranges::range_difference_t<R> operator()(R&& r, Pred pred, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));}}; inlineconstexpr count_if_fn count_if; |
[edit]Example
#include <algorithm>#include <cassert>#include <complex>#include <iostream>#include <vector> int main(){std::vector<int> v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10}; namespace ranges = std::ranges; // determine how many integers in a std::vector match a target value.int target1 =3;int target2 =5;int num_items1 = ranges::count(v.begin(), v.end(), target1);int num_items2 = ranges::count(v, target2);std::cout<<"number: "<< target1 <<" count: "<< num_items1 <<'\n';std::cout<<"number: "<< target2 <<" count: "<< num_items2 <<'\n'; // use a lambda expression to count elements divisible by 3.int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){return i %3==0;});std::cout<<"number divisible by three: "<< num_items3 <<'\n'; // use a lambda expression to count elements divisible by 11.int num_items11 = ranges::count_if(v, [](int i){return i %11==0;});std::cout<<"number divisible by eleven: "<< num_items11 <<'\n'; std::vector<std::complex<double>> nums{{4, 2}, {1, 3}, {4, 2}};#ifdef __cpp_lib_algorithm_default_value_typeauto c = ranges::count(nums, {4, 2});#elseauto c = ranges::count(nums, std::complex<double>{4, 2});#endifassert(c ==2);}
Output:
number: 3 count: 2 number: 5 count: 0 number divisible by three: 3 number divisible by eleven: 0
[edit]See also
(C++20) | returns the distance between an iterator and a sentinel, or between the beginning and end of a range (algorithm function object) |
(C++20) | creates a subrange from an iterator and a count (customization point object) |
a view that consists of the elements of a range that satisfies a predicate(class template)(range adaptor object) | |
returns the number of elements satisfying specific criteria (function template) |