Namespaces
Variants
Actions

std::ranges::count, std::ranges::count_if

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges(C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
(1)
template<std::input_iterator I, std::sentinel_for<I> S,

          class T, class Proj =std::identity>
requires std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexprstd::iter_difference_t<I>

    count( I first, S last, const T& value, Proj proj ={});
(since C++20)
(until C++26)
template<std::input_iterator I, std::sentinel_for<I> S,

          class Proj =std::identity,
          class T = std::projected_value_t<I, Proj>>
requires std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexprstd::iter_difference_t<I>

    count( I first, S last, const T& value, Proj proj ={});
(since C++26)
(2)
template<ranges::input_range R, class T, class Proj =std::identity>

requires std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexprranges::range_difference_t<R>

    count( R&& r, const T& value, Proj proj ={});
(since C++20)
(until C++26)
template<ranges::input_range R, class Proj =std::identity,

          class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
requires std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexprranges::range_difference_t<R>

    count( R&& r, const T& value, Proj proj ={});
(since C++26)
template<std::input_iterator I, std::sentinel_for<I> S,

          class Proj =std::identity,
          std::indirect_unary_predicate<std::projected<I, Proj>> Pred >
constexprstd::iter_difference_t<I>

    count_if( I first, S last, Pred pred, Proj proj ={});
(3)(since C++20)
template<ranges::input_range R, class Proj =std::identity,

          std::indirect_unary_predicate<
              std::projected<ranges::iterator_t<R>, Proj>> Pred >
constexprranges::range_difference_t<R>

    count_if( R&& r, Pred pred, Proj proj ={});
(4) (since C++20)

Returns the number of elements in the range [firstlast) satisfying specific criteria.

1) Counts the elements that are equal to value.
3) Counts elements for which predicate p returns true.
2,4) Same as (1,3), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit]Parameters

first, last - the iterator-sentinel pair defining the range of elements to examine
r - the range of the elements to examine
value - the value to search for
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

[edit]Return value

Number of elements satisfying the condition.

[edit]Complexity

Exactly last - first comparisons and projection.

[edit]Notes

For the number of elements in the range without any additional criteria, see std::ranges::distance.

Feature-test macroValueStdFeature
__cpp_lib_algorithm_default_value_type202403(C++26)List-initialization for algorithms (1,2)

[edit]Possible implementation

count (1)
struct count_fn {template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, class T = std::projected_value_t<I, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*>constexprstd::iter_difference_t<I> operator()(I first, S last, const T& value, Proj proj ={})const{std::iter_difference_t<I> counter =0;for(; first != last;++first)if(std::invoke(proj, *first)== value)++counter;return counter;}   template<ranges::input_range R, class Proj =std::identityclass T = std::projected_value_t<ranges::iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*>constexprranges::range_difference_t<R> operator()(R&& r, const T& value, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj));}};   inlineconstexpr count_fn count;
count_if (3)
struct count_if_fn {template<std::input_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred>constexprstd::iter_difference_t<I> operator()(I first, S last, Pred pred, Proj proj ={})const{std::iter_difference_t<I> counter =0;for(; first != last;++first)if(std::invoke(pred, std::invoke(proj, *first)))++counter;return counter;}   template<ranges::input_range R, class Proj =std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred>constexprranges::range_difference_t<R> operator()(R&& r, Pred pred, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));}};   inlineconstexpr count_if_fn count_if;

[edit]Example

#include <algorithm>#include <cassert>#include <complex>#include <iostream>#include <vector>   int main(){std::vector<int> v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10};   namespace ranges = std::ranges;   // determine how many integers in a std::vector match a target value.int target1 =3;int target2 =5;int num_items1 = ranges::count(v.begin(), v.end(), target1);int num_items2 = ranges::count(v, target2);std::cout<<"number: "<< target1 <<" count: "<< num_items1 <<'\n';std::cout<<"number: "<< target2 <<" count: "<< num_items2 <<'\n';   // use a lambda expression to count elements divisible by 3.int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){return i %3==0;});std::cout<<"number divisible by three: "<< num_items3 <<'\n';   // use a lambda expression to count elements divisible by 11.int num_items11 = ranges::count_if(v, [](int i){return i %11==0;});std::cout<<"number divisible by eleven: "<< num_items11 <<'\n';   std::vector<std::complex<double>> nums{{4, 2}, {1, 3}, {4, 2}};#ifdef __cpp_lib_algorithm_default_value_typeauto c = ranges::count(nums, {4, 2});#elseauto c = ranges::count(nums, std::complex<double>{4, 2});#endifassert(c ==2);}

Output:

number: 3 count: 2 number: 5 count: 0 number divisible by three: 3 number divisible by eleven: 0

[edit]See also

returns the distance between an iterator and a sentinel, or between the beginning and end of a range
(algorithm function object)[edit]
creates a subrange from an iterator and a count
(customization point object)[edit]
a view that consists of the elements of a range that satisfies a predicate
(class template)(range adaptor object)[edit]
returns the number of elements satisfying specific criteria
(function template)[edit]
close