std::ranges::prev_permutation, std::ranges::prev_permutation_result
Defined in header <algorithm> | ||
Call signature | ||
template<std::bidirectional_iterator I, std::sentinel_for<I> S, class Comp =ranges::less, class Proj =std::identity> | (1) | (since C++20) |
template<ranges::bidirectional_range R, class Comp =ranges::less, class Proj =std::identity> | (2) | (since C++20) |
Helper type | ||
template<class I > using prev_permutation_result =ranges::in_found_result<I>; | (3) | (since C++20) |
[
first,
last)
into the previous permutation, where the set of all permutations is ordered lexicographically with respect to binary comparison function object comp and projection function object proj.- {last, true} if "previous" permutation exists. Otherwise,
- {last, false}, and transforms the range into the (lexicographically) last permutation, as if by
ranges::sort(first, last, comp, proj);ranges::reverse(first, last);
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first, last | - | the iterator-sentinel pair defining the range of elements to "permute" |
r | - | the range of elements to "permute" |
comp | - | comparison FunctionObject which returns true if the first argument is less than the second |
proj | - | projection to apply to the elements |
[edit]Return value
[edit]Exceptions
Any exceptions thrown from iterator operations or the element swap.
[edit]Complexity
At most N / 2 swaps, where N is ranges::distance(first, last) in case (1) or ranges::distance(r) in case (2). Averaged over the entire sequence of permutations, typical implementations use about 3 comparisons and 1.5 swaps per call.
[edit]Notes
Implementations (e.g. MSVC STL) may enable vectorization when the iterator type models contiguous_iterator
and swapping its value type calls neither non-trivial special member function nor ADL-found swap
.
[edit]Possible implementation
struct prev_permutation_fn {template<std::bidirectional_iterator I, std::sentinel_for<I> S, class Comp =ranges::less, class Proj =std::identity> requires std::sortable<I, Comp, Proj>constexpr ranges::prev_permutation_result<I> operator()(I first, S last, Comp comp ={}, Proj proj ={})const{// check that the sequence has at least two elementsif(first == last)return{std::move(first), false};auto i{first};++i;if(i == last)return{std::move(i), false};auto i_last{ranges::next(first, last)}; i = i_last;--i;// main "permutating" loopfor(;;){auto i1{i};--i;if(std::invoke(comp, std::invoke(proj, *i1), std::invoke(proj, *i))){auto j{i_last};while(!std::invoke(comp, std::invoke(proj, *--j), std::invoke(proj, *i)));ranges::iter_swap(i, j);ranges::reverse(i1, last);return{std::move(i_last), true};}// permutation "space" is exhaustedif(i == first){ranges::reverse(first, last);return{std::move(i_last), false};}}} template<ranges::bidirectional_range R, class Comp =ranges::less, class Proj =std::identity> requires std::sortable<ranges::iterator_t<R>, Comp, Proj>constexpr ranges::prev_permutation_result<ranges::borrowed_iterator_t<R>> operator()(R&& r, Comp comp ={}, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj));}}; inlineconstexpr prev_permutation_fn prev_permutation {}; |
[edit]Example
#include <algorithm>#include <array>#include <compare>#include <functional>#include <iostream>#include <string> struct S {char c{};int i{};auto operator<=>(const S&)const=default;friendstd::ostream& operator<<(std::ostream& os, const S& s){return os <<"{'"<< s.c<<"', "<< s.i<<"}";}}; auto print =[](autoconst& v, char term =' '){std::cout<<"{ ";for(constauto& e : v)std::cout<< e <<' ';std::cout<<'}'<< term;}; int main(){std::cout<<"Generate all permutations (iterators case):\n";std::string s{"cba"};do print(s);while(std::ranges::prev_permutation(s.begin(), s.end()).found); std::cout<<"\nGenerate all permutations (range case):\n";std::array a{'c', 'b', 'a'};do print(a);while(std::ranges::prev_permutation(a).found); std::cout<<"\nGenerate all permutations using comparator:\n";usingnamespace std::literals;std::array z{"▁"s, "▄"s, "█"s};do print(z);while(std::ranges::prev_permutation(z, std::greater()).found); std::cout<<"\nGenerate all permutations using projection:\n";std::array<S, 3> r{S{'C',1}, S{'B',2}, S{'A',3}};do print(r, '\n');while(std::ranges::prev_permutation(r, {}, &S::c).found);}
Output:
Generate all permutations (iterators case): { c b a } { c a b } { b c a } { b a c } { a c b } { a b c } Generate all permutations (range case): { c b a } { c a b } { b c a } { b a c } { a c b } { a b c } Generate all permutations using comparator: { ▁ ▄ █ } { ▁ █ ▄ } { ▄ ▁ █ } { ▄ █ ▁ } { █ ▁ ▄ } { █ ▄ ▁ } Generate all permutations using projection: { {'C', 1} {'B', 2} {'A', 3} } { {'C', 1} {'A', 3} {'B', 2} } { {'B', 2} {'C', 1} {'A', 3} } { {'B', 2} {'A', 3} {'C', 1} } { {'A', 3} {'C', 1} {'B', 2} } { {'A', 3} {'B', 2} {'C', 1} }
[edit]See also
(C++20) | generates the next greater lexicographic permutation of a range of elements (algorithm function object) |
(C++20) | determines if a sequence is a permutation of another sequence (algorithm function object) |
generates the next greater lexicographic permutation of a range of elements (function template) | |
generates the next smaller lexicographic permutation of a range of elements (function template) | |
(C++11) | determines if a sequence is a permutation of another sequence (function template) |