Namespaces
Variants
Actions

std::result_of, std::invoke_result

From cppreference.com
< cpp‎ | types
 
 
Metaprogramming library
Type traits
Type categories
(C++11)
(C++11)(DR*)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11) 
Type properties
(C++11)
(C++11)
(C++14)
(C++11)(deprecated in C++26)
(C++11)(until C++20*)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
(C++17)
Supported operations
Relationships and property queries
Type modifications
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
result_ofinvoke_result
(C++11)(until C++20*)(C++17)

Compile-time rational arithmetic
Compile-time integer sequences
 
Defined in header <type_traits>
template<class>

class result_of;// not defined

template<class F, class... ArgTypes>

class result_of<F(ArgTypes...)>;
(1) (since C++11)
(deprecated in C++17)
(removed in C++20)
template<class F, class... ArgTypes>
class invoke_result;
(2) (since C++17)

Deduces the return type of an INVOKE expression at compile time.

F must be a callable type, reference to function, or reference to callable type. Invoking F with ArgTypes... must be a well-formed expression.

(since C++11)
(until C++14)

F and all types in ArgTypes can be any complete type, array of unknown bound, or (possibly cv-qualified) void.

(since C++14)

If the program adds specializations for any of the templates described on this page, the behavior is undefined.

Contents

[edit]Member types

Member type Definition
type the return type of the Callable type F if invoked with the arguments ArgTypes.... Only defined if F can be called with the arguments ArgTypes... in unevaluated context.(since C++14)

[edit]Helper types

template<class T >
using result_of_t =typename result_of<T>::type;
(1) (since C++14)
(deprecated in C++17)
(removed in C++20)
template<class F, class... ArgTypes>
using invoke_result_t =typename invoke_result<F, ArgTypes...>::type;
(2) (since C++17)

[edit]Possible implementation

namespace detail {template<class T>struct is_reference_wrapper :std::false_type{};template<class U>struct is_reference_wrapper<std::reference_wrapper<U>>:std::true_type{};   template<class T>struct invoke_impl {template<class F, class... Args>staticauto call(F&& f, Args&&... args)-> decltype(std::forward<F>(f)(std::forward<Args>(args)...));};   template<class B, class MT>struct invoke_impl<MT B::*>{template<class T, class Td =typenamestd::decay<T>::type, class=typenamestd::enable_if<std::is_base_of<B, Td>::value>::type>staticauto get(T&& t)-> T&&;   template<class T, class Td =typenamestd::decay<T>::type, class=typenamestd::enable_if<is_reference_wrapper<Td>::value>::type>staticauto get(T&& t)-> decltype(t.get());   template<class T, class Td =typenamestd::decay<T>::type, class=typenamestd::enable_if<!std::is_base_of<B, Td>::value>::type, class=typenamestd::enable_if<!is_reference_wrapper<Td>::value>::type>staticauto get(T&& t)-> decltype(*std::forward<T>(t));   template<class T, class... Args, class MT1, class=typenamestd::enable_if<std::is_function<MT1>::value>::type>staticauto call(MT1 B::*pmf, T&& t, Args&&... args)-> decltype((invoke_impl::get(std::forward<T>(t)).*pmf)(std::forward<Args>(args)...));   template<class T>staticauto call(MT B::*pmd, T&& t)-> decltype(invoke_impl::get(std::forward<T>(t)).*pmd);};   template<class F, class... Args, class Fd =typenamestd::decay<F>::type>auto INVOKE(F&& f, Args&&... args)-> decltype(invoke_impl<Fd>::call(std::forward<F>(f), std::forward<Args>(args)...));}// namespace detail   // Minimal C++11 implementation:template<class>struct result_of;template<class F, class... ArgTypes>struct result_of<F(ArgTypes...)>{using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<ArgTypes>()...));};   // Conforming C++14 implementation (is also a valid C++11 implementation):namespace detail {template<typename AlwaysVoid, typename, typename...>struct invoke_result {};template<typename F, typename...Args>struct invoke_result< decltype(void(detail::INVOKE(std::declval<F>(), std::declval<Args>()...))), F, Args...>{using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<Args>()...));};}// namespace detail   template<class>struct result_of;template<class F, class... ArgTypes>struct result_of<F(ArgTypes...)>: detail::invoke_result<void, F, ArgTypes...>{};   template<class F, class... ArgTypes>struct invoke_result : detail::invoke_result<void, F, ArgTypes...>{};

[edit]Notes

As formulated in C++11, the behavior of std::result_of is undefined when INVOKE(std::declval<F>(), std::declval<ArgTypes>()...) is ill-formed (e.g. when F is not a callable type at all). C++14 changes that to a SFINAE (when F is not callable, std::result_of<F(ArgTypes...)> simply doesn't have the type member).

The motivation behind std::result_of is to determine the result of invoking a Callable, in particular if that result type is different for different sets of arguments.

F(Args...) is a function type with Args... being the argument types and F being the return type. As such, std::result_of suffers from several quirks that led to its deprecation in favor of std::invoke_result in C++17:

  • F cannot be a function type or an array type (but can be a reference to them);
  • if any of the Args has type "array of T" or a function type T, it is automatically adjusted to T*;
  • neither F nor any of Args... can be an abstract class type;
  • if any of Args... has a top-level cv-qualifier, it is discarded;
  • none of Args... may be of type void.

To avoid these quirks, result_of is often used with reference types as F and Args.... For example:

template<class F, class... Args> std::result_of_t<F&&(Args&&...)>// instead of std::result_of_t<F(Args...)>, which is wrong my_invoke(F&& f, Args&&... args){/* implementation */}

[edit]Notes

Feature-test macro ValueStdFeature
__cpp_lib_result_of_sfinae201210L(C++14)std::result_of and SFINAE
__cpp_lib_is_invocable201703L(C++17)std::is_invocable, std::invoke_result

[edit]Examples

#include <iostream>#include <type_traits>   struct S {double operator()(char, int&);float operator()(int){return1.0;}};   template<class T>typename std::result_of<T(int)>::type f(T& t){std::cout<<"overload of f for callable T\n";return t(0);}   template<class T, class U>int f(U u){std::cout<<"overload of f for non-callable T\n";return u;}   int main(){// the result of invoking S with char and int& arguments is double std::result_of<S(char, int&)>::type d =3.14;// d has type double static_assert(std::is_same<decltype(d), double>::value, "");   // std::invoke_result uses different syntax (no parentheses) std::invoke_result<S,char,int&>::type b =3.14; static_assert(std::is_same<decltype(b), double>::value, "");   // the result of invoking S with int argument is float std::result_of<S(int)>::type x =3.14;// x has type float static_assert(std::is_same<decltype(x), float>::value, "");   // result_of can be used with a pointer to member function as followsstruct C {double Func(char, int&);}; std::result_of<decltype(&C::Func)(C, char, int&)>::type g =3.14; static_assert(std::is_same<decltype(g), double>::value, "");   f<C>(1);// may fail to compile in C++11; calls the non-callable overload in C++14}

Output:

overload of f for non-callable T

[edit]See also

(C++17)(C++23)
invokes any Callable object with given arguments and possibility to specify return type(since C++23)
(function template)[edit]
checks if a type can be invoked (as if by std::invoke) with the given argument types
(class template)[edit]
(C++11)
obtains a reference to an object of the template type argument for use in an unevaluated context
(function template)[edit]
close