Python Pandas read_html() Method



The Python Pandas read_html() method is a powerful tool to read tables from HTML documents and load them into a list of DataFrames. It supports multiple parsing engines (like lxml, BeautifulSoup) and provides extensive customization options through parameters like match, attrs, and extract_links. This method is particularly useful for web scraping and data analysis tasks that involve HTML tables.

HTML is a structured format used to represent tabular data in rows and columns within a webpage. Extracting tabular data from an HTML to Python's environment is possible by using this method.

Syntax

Below is the syntax of the read_html() method −

 pandas.read_html(io, *, match='.+', flavor=None, header=None, index_col=None, skiprows=None, attrs=None, parse_dates=False, thousands=', ', encoding=None, decimal='.', converters=None, na_values=None, keep_default_na=True, displayed_only=True, extract_links=None, dtype_backend=<no_default>, storage_options=None) 

Parameters

The Python Pandas read_html() method accepts following parameters −

  • io: A string, path object, or file-like object representing the HTML source or a URL.

  • match: A string or regex to filter tables based on matching text. Default is '.+'.

  • flavor: The parsing engine, e.g., 'lxml', 'html5lib', or 'bs4'.

  • header: Specifies row to use as column headers.

  • index_col: Column or list of columns to use as the DataFrame index.

  • skiprows: Rows to skip when parsing the table.

  • attrs: A dictionary of HTML table attributes for table selection.

  • parse_dates: Converts columns to datetime if set to True.

  • thousands: Specifies a separator to use to parse thousands. Defaults to ','.

  • encoding: Encoding used to decode the web page. By default it is set to None, which preserves the previous encoding.

  • decimal: Character to recognize as a decimal point.

  • converters: Functions to transform specific column values.

  • na_values: Customize NA values. Defaults to None.

  • extract_links: Extracts href links from table sections.

  • dtype_backend: Backend data type for the resultant DataFrame.

  • storage_options: Extra options related to storage connections.

Return Value

The Pandas read_html() method returns a list of DataFrames, where each DataFrame represents a table found in the HTML source.

Example: Reading an HTML String

The following example demonstrates the basic usage of the read_html() method to extract data from an HTML string.

 import pandas as pd from io import StringIO # Create a string representing HTML table html_content = """ <table> <tr><th>Name</th><th>Age</th></tr> <tr><td>Kiran</td><td>25</td></tr> <tr><td>Nithin</td><td>30</td></tr> </table> """ # Read table from HTML content tables = pd.read_html(StringIO(html_content)) print('Output DataFrame from HTML Table:') print(tables[0]) 

Running this code will produce the following output −

 Output DataFrame from HTML Table: 
NameAge
0Kiran25
1Nithin30

Example: Extracting a Specific HTML Table with attrs

It is possible to extract a specific table from multiple HTML tables by using the attrs parameter of the read_html() method. In the following example we will extract the data from an HTML table which contains the id="employment_info".

 import pandas as pd from io import StringIO # Create a string representing HTML table html_content = """ <table> <tr><th>Name</th><th>Age</th></tr> <tr><td>Kiran</td><td>25</td></tr> <tr><td>Nithin</td><td>30</td></tr> </table> <table id="employment_info"> <tr><th>Role</th><th>Salary</th></tr> <tr><td>HR</td><td>40000</td></tr> <tr><td>Sr Manager</td><td>60000</td></tr> </table> """ # Read the table with specific attributes tables = pd.read_html(StringIO(html_content), attrs={"id": "employment_info"}) print('Output DataFrame from HTML Table:') print(tables[0]) 

The output of the above code is as follows −

 Output DataFrame from HTML Table: 
RoleSalary
0HR40000
1Sr Manager60000

Example: Reading HTML Tables from a URL

You can read tables from a URL containing multiple tables using the read_html() method and you can also filter the a specific table using the match parameter.

 import pandas as pd # Read tables from a URL url = "https://www.tutorialspoint.com/python_pandas/python_pandas_descriptive_statistics.htm" # Read the table matching "cumsum" tables = pd.read_html(url, match="cumsum", ) print('Output DataFrame from HTML Table:') print(tables[0]) 

The output of the above code contains the filtered data −

 Output DataFrame from HTML Table: 
Sr.No.Methods & Description
01cumsum() Return cumulative sum over a DataFrame...
12cumprod() Return cumulative product over a Data...
23cummax() Return cumulative maximum over a Data...
34cummin() Return cumulative minimum over a Data...

Example: Extracting Hyperlinks While Reading an HTML Table

This example demonstrates how to extract hyperlinks while reading an HTML table into Pandas DataFrame using the extract_links parameter of the read_html() method.

 import pandas as pd from io import StringIO # Create a string representing HTML table html_content = """ <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Name</th> <th>URL</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>Tutorialspoint</td> <td><a href="https://www.tutorialspoint.com/index.htm" target="_blank">https://www.tutorialspoint.com/index.htm</a></td> </tr> <tr> <th>1</th> <td>Python Pandas Tutorial</td> <td><a href="https://www.tutorialspoint.com/python_pandas/index.htm" target="_blank">https://www.tutorialspoint.com/python_pandas/index.htm</a></td> </tr> </tbody> </table> """ # Extract hyperlinks from the HTML Table tables = pd.read_html(StringIO(html_content), extract_links="all") print('Output from reading HTML Table:') print(tables[0]) 

On executing the above code we will get the following output −

 Output from reading HTML Table: 
(, None)...(URL, None)
0(0, None)...(https://www.tutorialspoint.com/index.htm, htt...)
1(1, None)...(https://www.tutorialspoint.com/python_pandas/...
python_pandas_io_tool.htm
Advertisements
close