Python Pandas - Aggregations



Aggregating data is a key step in data analysis, especially when dealing with large datasets. In Pandas, you can perform aggregations using the DataFrame.agg() method, This method is flexible, enabling various operations that summarize and analyze your data. Aggregation operations in Pandas can be applied to either the index axis (default) or the column axis.

In this tutorial we will discuss about how to use the DataFrame.agg() method to perform various aggregation techniques, including how to apply multiple aggregation functions, customize aggregations for specific columns, and work with both rows and columns.

Understanding the DataFrame.agg() Method

The DataFrame.agg() method (an alias for aggregate) is a powerful tool that allows you to apply one or more aggregation functions to a DataFrame, either across rows or columns, providing a summary of the data.

Syntax

Following is the syntax −

 DataFrame.agg(func=None, axis=0, *args, **kwargs) 

Where,

  • func: This parameter specifies the aggregation function(s) to be applied. It accepts a single function or function name (e.g., np.sum, 'mean'), a list of functions or function names, or a dictionary mapping axis labels to functions.

  • axis: Specifies the axis along which to apply the aggregation. 0 or 'index' applies the function(s) to each column (default), while 1 or 'columns' applies the function(s) to each row.

  • *args: Positional arguments to pass to the aggregation function(s).

  • **kwargs: Keyword arguments to pass to the aggregation function(s).

The result of agg() method depends on the input, it returns a scalar or Series if a single function is used, or a DataFrame if multiple functions are applied.

Applying Aggregations on DataFrame Rows

You can aggregate multiple functions over the rows (index axis) using the agg function. This method applies the specified aggregation functions to each column in the DataFrame.

Example

Let us create a DataFrame and apply aggregation functions sum and min on it. In this example, the sum and min functions are applied to each column, providing a summary of the data.

 import pandas as pd import numpy as np df = pd.DataFrame([[1, 2, 3, 1], [4, 5, 6, np.nan], [7, 8, 9, 2], [np.nan, 2, np.nan, 3]], index = pd.date_range('1/1/2024', periods=4), columns = ['A', 'B', 'C', 'D']) print("Input DataFrame:\n",df) result = df.agg(['sum', 'min']) print("\nResults:\n",result) 

Its output is as follows −

 Input DataFrame: A B C D 2024-01-01 1.0 2 3.0 1.0 2024-01-02 4.0 5 6.0 NaN 2024-01-03 7.0 8 9.0 2.0 2024-01-04 NaN 2 NaN 3.0 Results: A B C D sum 12.0 17 18.0 6.0 min 1.0 2 3.0 1.0 

Applying Different Functions Per Column

You can also apply different aggregation functions to different columns by passing a dictionary to the agg function. Each key in the dictionary corresponds to a column, and the value is a list of aggregation functions to apply.

 import pandas as pd import numpy as np df = pd.DataFrame([[1, 2, 3, 1], [4, 5, 6, np.nan], [7, 8, 9, 2], [np.nan, 2, np.nan, 3]], index = pd.date_range('1/1/2024', periods=4), columns = ['A', 'B', 'C', 'D']) print("Input DataFrame:\n",df) result = df.agg({'A': ['sum', 'min'], 'B': ['min', 'max']}) print("\nResults:\n",result) 

On executing the above code, it produces following output:

 Input DataFrame: A B C D 2024-01-01 1.0 2 3.0 1.0 2024-01-02 4.0 5 6.0 NaN 2024-01-03 7.0 8 9.0 2.0 2024-01-04 NaN 2 NaN 3.0 Results: A B sum 12.0 NaN min 1.0 2.0 max NaN 8.0 

Apply Aggregation on a Single Column

You can apply aggregation functions to individual columns, such as calculating a rolling sum.

 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4), index = pd.date_range('1/1/2000', periods=10), columns = ['A', 'B', 'C', 'D']) print(df) r = df.rolling(window=3,min_periods=1) print(r['A'].aggregate(np.sum)) 

Its output is as follows −

 A B C D 2000-01-01 1.088512 -0.650942 -2.547450 -0.566858 2000-01-02 1.879182 -1.038796 -3.215581 -0.299575 2000-01-03 1.303660 -2.003821 -3.155154 -2.479355 2000-01-04 1.884801 -0.141119 -0.862400 -0.483331 2000-01-05 1.194699 0.010551 0.297378 -1.216695 2000-01-06 1.925393 1.968551 -0.968183 1.284044 2000-01-07 0.565208 0.032738 -2.125934 0.482797 2000-01-08 0.564129 -0.759118 -2.454374 -0.325454 2000-01-09 2.048458 -1.820537 -0.535232 -1.212381 2000-01-10 2.065750 0.383357 1.541496 -3.201469 2000-01-01 1.088512 2000-01-02 1.879182 2000-01-03 1.303660 2000-01-04 1.884801 2000-01-05 1.194699 2000-01-06 1.925393 2000-01-07 0.565208 2000-01-08 0.564129 2000-01-09 2.048458 2000-01-10 2.065750 Freq: D, Name: A, dtype: float64 

Customizing the Result

Pandas allows you to aggregate different functions across the columns and rename the resulting DataFrame's index. This can be done by passing tuples to the agg() function.

Example

The following example applies the aggregation with custom index labels.

 import pandas as pd import numpy as np df = pd.DataFrame([[1, 2, 3, 1], [4, 5, 6, np.nan], [7, 8, 9, 2], [np.nan, 2, np.nan, 3]], index = pd.date_range('1/1/2024', periods=4), columns = ['A', 'B', 'C', 'D']) print("Input DataFrame:\n",df) result = df.agg(x=('A', 'max'), y=('B', 'min'), z=('C', 'mean')) print("\nResults:\n",result) 

Its output is as follows −

 Input DataFrame: A B C D 2024-01-01 1.0 2 3.0 1.0 2024-01-02 4.0 5 6.0 NaN 2024-01-03 7.0 8 9.0 2.0 2024-01-04 NaN 2 NaN 3.0 Results: A B C x 7.0 NaN NaN y NaN 2.0 NaN z NaN NaN 6.0 

Applying Aggregating Over Columns

In addition to aggregating over rows, you can aggregate over the columns by setting the axis parameter to columns (axis=1). This is useful when you want to apply an aggregation function across the rows.

Example

This example applies the mean() function across the columns for each row.

 import pandas as pd import numpy as np df = pd.DataFrame([[1, 2, 3, 1], [4, 5, 6, np.nan], [7, 8, 9, 2], [np.nan, 2, np.nan, 3]], index = pd.date_range('1/1/2024', periods=4), columns = ['A', 'B', 'C', 'D']) print("Input DataFrame:\n",df) result = df.agg("mean", axis="columns") print("\nResults:\n",result) 

Its output is as follows −

 Input DataFrame: A B C D 2024-01-01 1.0 2 3.0 1.0 2024-01-02 4.0 5 6.0 NaN 2024-01-03 7.0 8 9.0 2.0 2024-01-04 NaN 2 NaN 3.0 Results: 2024-01-01 1.75 2024-01-02 5.00 2024-01-03 6.50 2024-01-04 2.50 Freq: D, dtype: float64 
Advertisements
close