
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas - Environment Setup
Setting up an environment to use the Pandas library is straightforward, and there are multiple ways to achieve this. Whether you prefer using Anaconda, Miniconda, or pip, you can easily get Pandas up and running on your system. This tutorial will guide you through the different methods to install Pandas.
Installing Pandas with pip
The most common way to install Pandas is by using the pip, it is a Python package manager (pip) allows you to install modules and packages. This method is suitable if you already have Python installed on your system. Note that the standard Python distribution does not come bundled with the Pandas module.
To install the pandas package by using pip you need to open the command prompt in our system (assuming, your machine is a windows operating system), and run the following command −
pip install pandas
This command will download and install the Pandas package along with its dependencies. If you install Anaconda Python package, Pandas will be installed by default with the following −
Upgrading pip (if necessary)
If you encounter any errors regarding the pip version, you can upgrade pip using the following command −
python -m pip install --upgrade pip
Then, rerun the Pandas installation command.
Installing a Specific Version of Pandas
If you need a specific version of Pandas, you can specify it using the following command −
pip install pandas==2.1.2
Every time, when you try to install any package, initially pip will check for the package dependencies if they are already installed on the system or not. if not, it will install them. Once all dependencies have been satisfied, it proceeds to install the requested package(s).
Installing Pandas Using Anaconda
Anaconda is a popular distribution for data science that includes Python and many scientific libraries, including Pandas.
Following are the steps to install Anaconda −
- Download Anaconda: Go to Anaconda's official website and download the installer suitable for your operating system.
- Install Anaconda: Follow the installation instructions provided on the Anaconda website.
Pandas comes pre-installed with Anaconda, so you can directly import it in your Python environment.
import pandas as pd
Installing a Specific Version of Pandas with Anaconda
If you need a specific version of Pandas, you can install it using the conda command −
conda install pandas=2.1.2
Anaconda will take up to 300GB of system space for storage and 600GB for air-gapped deployments because it comes with the most common data science packages in Python like Numpy, Pandas, and many more.
Installing Pandas Using Miniconda
Both Anaconda and minconda use the conda package installer, but using anaconda will occupy more system storage. Because anaconda has more than 100 packages, those are automatically installed and the result needs more space.
Miniconda is a minimal installer for conda, which includes only the conda package manager and Python. It is lightweight compared to Anaconda and is suitable if you want more control over the packages you install.
Following are the steps to install Miniconda −
- Download Miniconda: Visit the Miniconda download page and download the installer for your operating system.
- Install Miniconda: Follow the installation instructions provided on the Miniconda website.
Installing Pandas with Miniconda
After successfully installing Miniconda, you can use the conda command to install Pandas −
conda install pandas
Installing Pandas on Linux
On Linux, you can use the package manager of your respective distribution to install Pandas and other scientific libraries.
For Ubuntu Users
sudo apt-get install python-numpy python-scipy python-matplotlibipythonipythonnotebook python-pandas python-sympy python-nose
For Fedora Users
sudo yum install numpyscipy python-matplotlibipython python-pandas sympy python-nose atlas-devel
By following any of these methods, you can set up Pandas on your system and start using it for data analysis and manipulation.