
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas - Feather File Format
The Feather file format in Pandas provides a fast and efficient way to store and retrieve DataFrame data in a binary format. It is a portable file format optimized for high-performance I/O operations and is portable across different platforms.
What is the Feather File Format?
Feather is a binary columnar file format designed for efficient data storage and fast retrieval of tabular data. It supports all Pandas data types, including extension types like categorical and timezone-aware datetime types. The format is based on Apache Arrow's memory specification, enabling high-performance I/O operations.
The Feather file format is language-independent binary file format designed for efficient data exchanging. It is supported by both Python and R languages, ensuring easy data sharing compatibility across data analysis languages. This format is also efficient for fast reading and writing capabilities with less memory usage.
Important Considerations
When working with Feather files in Pandas, you need to keep the following points in mind −
Index Storage: Pandas does not store DataFrame indices (Index, or MultiIndex) in Feather files. You can use reset_index() method if you need to store the index.
Unique Column Names: Duplicate or non-string column names are not supported.
Object Data Types: Columns with object data types are not supported and will raise an error during serialization.
Saving a Pandas DataFrame as a Feather File
To save a Pandas object to a Feather file, you can use the DataFrame.to_feather() method, which saves data of the Pandas object to a file in feather format.
Note: Before saving or retrieving the data from a feather file you need to ensure that the 'pyarrow' library is installed. It is an optional Python dependency library that needs to be installed it by using the following command −
pip install pyarrow.
Example
Following is the example that uses the to_feather() method for saving a Pandas DataFrame object into a feather file.
import pandas as pd import numpy as np # Create a sample DataFrame df = pd.DataFrame({ "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20240101", periods=3) }) print("Original DataFrame:") print(df) # Save the DataFrame as a feather file df.to_feather("df_feather_file.feather") print("\nDataFrame is successfully saved as a feather file.")
When we run above program, it produces following result −
Original DataFrame:
a | b | c | d | e | f | g | |
---|---|---|---|---|---|---|---|
0 | a | 1 | 3 | 4.0 | True | a | 2024-01-01 |
1 | b | 2 | 4 | 5.0 | False | b | 2024-01-02 |
2 | c | 3 | 5 | 6.0 | True | c | 2024-01-03 |
Reading a Feather File into Pandas
For loading a feather file data into the Pandas object, you can use the read_feather() method. This method provides several options for customizing data reading.
Example
This example reads the Pandas object from a feather file using the Pandas read_feather() method.
import pandas as pd import numpy as np # Create a sample DataFrame df = pd.DataFrame({ "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20240101", periods=3) }) # Save the DataFrame as a feather file df.to_feather("df_feather_file.feather") # Load the feather file result = pd.read_feather("df_feather_file.feather") # Display the DataFrame print(result) # Verify data types print("\nData Type of the each column:") print(result.dtypes)
While executing the above code we get the following output −
a | b | c | d | e | f | g | |
---|---|---|---|---|---|---|---|
0 | a | 1 | 3 | 4.0 | True | a | 2024-01-01 |
1 | b | 2 | 4 | 5.0 | False | b | 2024-01-02 |
2 | c | 3 | 5 | 6.0 | True | c | 2024-01-03 |
Handling Feather Files in Memory
In-memory files in Python stores the data in RAM rather than reading/writing to a disk. This avoids the high latency of physical I/O operations. Python provides several types of in-memory files, including −
Memory-mapped files
StringIO
BytesIO
MemoryFS
Example
This example demonstrates saving and loading a DataFrame as a feather format In-Memory using the read_feather() and to_feather() methods with the help of the BytesIO library, for the in-memory binary data storage.
import pandas as pd import io # Create a DataFrame df = pd.DataFrame({"Col_1": range(5), "Col_2": range(5, 10)}) print("Original DataFrame:") print(df) # Save the DataFrame as In-Memory feather buf = io.BytesIO() df.to_feather(buf) # Read the DataFrame from the in-memory buffer loaded_df = pd.read_feather(buf) print("\nDataFrame Loaded from In-Memory Feather:") print(loaded_df)
Following is an output of the above code −
Original DataFrame:
Col_1 | Col_2 | |
---|---|---|
0 | 0 | 5 |
1 | 1 | 6 |
2 | 2 | 7 |
3 | 3 | 8 |
4 | 4 | 9 |
Col_1 | Col_2 | |
---|---|---|
0 | 0 | 5 |
1 | 1 | 6 |
2 | 2 | 7 |
3 | 3 | 8 |
4 | 4 | 9 |