std::ranges::find_last, std::ranges::find_last_if, std::ranges::find_last_if_not
Defined in header <algorithm> | ||
Call signature | ||
(1) | ||
template<std::forward_iterator I, std::sentinel_for<I> S, class T, | (since C++23) (until C++26) | |
template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, | (since C++26) | |
(2) | ||
template<ranges::forward_range R, class T, | (since C++23) (until C++26) | |
template<ranges::forward_range R, class Proj =std::identity, | (since C++26) | |
template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, | (3) | (since C++23) |
template<ranges::forward_range R, class Proj =std::identity, | (4) | (since C++23) |
template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, | (5) | (since C++23) |
template<ranges::forward_range R, class Proj =std::identity, | (6) | (since C++23) |
Returns the last element in the range [
first,
last)
that satisfies specific criteria:
find_last
searches for an element equal to value.find_last_if
searches for the last element in the range [
first,
last)
for which predicate pred returns true.find_last_if_not
searches for the last element in the range [
first,
last)
for which predicate pred returns false.The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first, last | - | the iterator-sentinel pair defining the range of elements to examine |
r | - | the range of the elements to examine |
value | - | value to compare the elements to |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
[edit]Return value
[
first,
last)
for which E is true.[edit]Complexity
At most last - first applications of the predicate and projection.
[edit]Notes
ranges::find_last
, ranges::find_last_if
, ranges::find_last_if_not
have better efficiency on common implementations if I
models bidirectional_iterator
or (better) random_access_iterator
.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_find_last | 202207L | (C++23) | ranges::find_last ,ranges::find_last_if ,ranges::find_last_if_not |
__cpp_lib_algorithm_default_value_type | 202403L | (C++26) | List-initialization for algorithms (1,2) |
[edit]Possible implementation
These implementations only show the slower algorithm used when I models forward_iterator
.
find_last (1,2) |
---|
struct find_last_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*>constexprranges::subrange<I> operator()(I first, S last, const T &value, Proj proj ={})const{// Note: if I is mere forward_iterator, we may only go from begin to end.std::optional<I> found;for(; first != last;++first)if(std::invoke(proj, *first)== value) found = first; if(!found)return{first, first}; return{*found, std::ranges::next(*found, last)};} template<ranges::forward_range R, class Proj =std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*>constexprranges::borrowed_subrange_t<R> operator()(R&& r, const T &value, Proj proj ={})const{return this->operator()(ranges::begin(r), ranges::end(r), value, std::ref(proj));}}; inlineconstexpr find_last_fn find_last; |
find_last_if (3,4) |
struct find_last_if_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred>constexprranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj ={})const{// Note: if I is mere forward_iterator, we may only go from begin to end.std::optional<I> found;for(; first != last;++first)if(std::invoke(pred, std::invoke(proj, *first))) found = first; if(!found)return{first, first}; return{*found, std::ranges::next(*found, last)};} template<ranges::forward_range R, class Proj =std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred>constexprranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj ={})const{return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));}}; inlineconstexpr find_last_if_fn find_last_if; |
find_last_if_not (5,6) |
struct find_last_if_not_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred>constexprranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj ={})const{// Note: if I is mere forward_iterator, we may only go from begin to end.std::optional<I> found;for(; first != last;++first)if(!std::invoke(pred, std::invoke(proj, *first))) found = first; if(!found)return{first, first}; return{*found, std::ranges::next(*found, last)};} template<ranges::forward_range R, class Proj =std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred>constexprranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj ={})const{return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));}}; inlineconstexpr find_last_if_not_fn find_last_if_not; |
[edit]Example
#include <algorithm>#include <cassert>#include <forward_list>#include <iomanip>#include <iostream>#include <string_view> int main(){namespace ranges = std::ranges; constexprstaticauto v ={1, 2, 3, 1, 2, 3, 1, 2}; {constexprauto i1 = ranges::find_last(v.begin(), v.end(), 3);constexprauto i2 = ranges::find_last(v, 3); static_assert(ranges::distance(v.begin(), i1.begin())==5); static_assert(ranges::distance(v.begin(), i2.begin())==5);}{constexprauto i1 = ranges::find_last(v.begin(), v.end(), -3);constexprauto i2 = ranges::find_last(v, -3); static_assert(i1.begin()== v.end()); static_assert(i2.begin()== v.end());} auto abs =[](int x){return x <0?-x : x;}; {auto pred =[](int x){return x ==3;};constexprauto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin())==5); static_assert(ranges::distance(v.begin(), i2.begin())==5);}{auto pred =[](int x){return x ==-3;};constexprauto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if(v, pred, abs); static_assert(i1.begin()== v.end()); static_assert(i2.begin()== v.end());} {auto pred =[](int x){return x ==1 or x ==2;};constexprauto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin())==5); static_assert(ranges::distance(v.begin(), i2.begin())==5);}{auto pred =[](int x){return x ==1 or x ==2 or x ==3;};constexprauto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(i1.begin()== v.end()); static_assert(i2.begin()== v.end());} using P =std::pair<std::string_view, int>;std::forward_list<P> list {{"one", 1}, {"two", 2}, {"three", 3}, {"one", 4}, {"two", 5}, {"three", 6}, };auto cmp_one =[](conststd::string_view&s){return s =="one";}; // find latest element that satisfy the comparator, and projecting pair::firstconstauto subrange = ranges::find_last_if(list, cmp_one, &P::first); std::cout<<"The found element and the tail after it are:\n";for(P const& e : subrange)std::cout<<'{'<<std::quoted(e.first)<<", "<< e.second<<"} ";std::cout<<'\n'; #if __cpp_lib_algorithm_default_value_typeconstauto i3 = ranges::find_last(list, {"three", 3});// (2) C++26#elseconstauto i3 = ranges::find_last(list, P{"three", 3});// (2) C++23#endifassert(i3.begin()->first =="three"&& i3.begin()->second ==3);}
Output:
The found element and the tail after it are: {"one", 4} {"two", 5} {"three", 6}
[edit]See also
(C++20) | finds the last sequence of elements in a certain range (algorithm function object) |
(C++20)(C++20)(C++20) | finds the first element satisfying specific criteria (algorithm function object) |
(C++20) | searches for the first occurrence of a range of elements (algorithm function object) |
(C++20) | returns true if one sequence is a subsequence of another (algorithm function object) |
(C++20) | determines if an element exists in a partially-ordered range (algorithm function object) |
(C++23)(C++23) | checks if the range contains the given element or subrange (algorithm function object) |