Namespaces
Variants
Actions

std::ranges::find_last, std::ranges::find_last_if, std::ranges::find_last_if_not

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges(C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
(1)
template<std::forward_iterator I, std::sentinel_for<I> S,

          class T,
          class Proj =std::identity>
requires std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexprranges::subrange<I>

    find_last( I first, S last, const T& value, Proj proj ={});
(since C++23)
(until C++26)
template<std::forward_iterator I, std::sentinel_for<I> S,

          class Proj =std::identity,
          class T = std::projected_value_t<I, Proj>>
requires std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexprranges::subrange<I>

    find_last( I first, S last, const T& value, Proj proj ={});
(since C++26)
(2)
template<ranges::forward_range R,

          class T,
          class Proj =std::identity>
requires std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexprranges::borrowed_subrange_t<R>

    find_last( R&& r, const T& value, Proj proj ={});
(since C++23)
(until C++26)
template<ranges::forward_range R,

          class Proj =std::identity,
          class T = std::projected_value_t<iterator_t<R>, Proj>>
requires std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexprranges::borrowed_subrange_t<R>

    find_last( R&& r, const T& value, Proj proj ={});
(since C++26)
template<std::forward_iterator I, std::sentinel_for<I> S,

          class Proj =std::identity,
          std::indirect_unary_predicate<std::projected<I, Proj>> Pred >
constexprranges::subrange<I>

    find_last_if( I first, S last, Pred pred, Proj proj ={});
(3)(since C++23)
template<ranges::forward_range R,

          class Proj =std::identity,
          std::indirect_unary_predicate
              <std::projected<ranges::iterator_t<R>, Proj>> Pred >
constexprranges::borrowed_subrange_t<R>

    find_last_if( R&& r, Pred pred, Proj proj ={});
(4) (since C++23)
template<std::forward_iterator I, std::sentinel_for<I> S,

          class Proj =std::identity,
          std::indirect_unary_predicate<std::projected<I, Proj>> Pred >
constexprranges::subrange<I>

    find_last_if_not( I first, S last, Pred pred, Proj proj ={});
(5)(since C++23)
template<ranges::forward_range R,

          class Proj =std::identity,
          std::indirect_unary_predicate
              <std::projected<ranges::iterator_t<R>, Proj>> Pred >
constexprranges::borrowed_subrange_t<R>

    find_last_if_not( R&& r, Pred pred, Proj proj ={});
(6) (since C++23)

Returns the last element in the range [firstlast) that satisfies specific criteria:

1)find_last searches for an element equal to value.
3)find_last_if searches for the last element in the range [firstlast) for which predicate pred returns true.
5)find_last_if_not searches for the last element in the range [firstlast) for which predicate pred returns false.
2,4,6) Same as (1,3,5), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit]Parameters

first, last - the iterator-sentinel pair defining the range of elements to examine
r - the range of the elements to examine
value - value to compare the elements to
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

[edit]Return value

1,3,5) Let i be the last iterator in the range [firstlast) for which E is true.
Returns ranges::subrange<I>{i, last}, or ranges::subrange<I>{last, last} if no such iterator is found.
1)E is bool(std::invoke(proj, *i)== value).
3)E is bool(std::invoke(pred, std::invoke(proj, *i))).
5)E is bool(!std::invoke(pred, std::invoke(proj, *i))).
2,4,6) Same as (1,3,5) but the return type is ranges::borrowed_subrange_t<I>.

[edit]Complexity

At most last - first applications of the predicate and projection.

[edit]Notes

ranges::find_last, ranges::find_last_if, ranges::find_last_if_not have better efficiency on common implementations if I models bidirectional_iterator or (better) random_access_iterator.

Feature-test macro ValueStdFeature
__cpp_lib_ranges_find_last202207L(C++23)ranges::find_last,
ranges::find_last_if,
ranges::find_last_if_not
__cpp_lib_algorithm_default_value_type202403L(C++26)List-initialization for algorithms (1,2)

[edit]Possible implementation

These implementations only show the slower algorithm used when I models forward_iterator.

find_last (1,2)
struct find_last_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*>constexprranges::subrange<I> operator()(I first, S last, const T &value, Proj proj ={})const{// Note: if I is mere forward_iterator, we may only go from begin to end.std::optional<I> found;for(; first != last;++first)if(std::invoke(proj, *first)== value) found = first;   if(!found)return{first, first};   return{*found, std::ranges::next(*found, last)};}   template<ranges::forward_range R, class Proj =std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*>constexprranges::borrowed_subrange_t<R> operator()(R&& r, const T &value, Proj proj ={})const{return this->operator()(ranges::begin(r), ranges::end(r), value, std::ref(proj));}};   inlineconstexpr find_last_fn find_last;
find_last_if (3,4)
struct find_last_if_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred>constexprranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj ={})const{// Note: if I is mere forward_iterator, we may only go from begin to end.std::optional<I> found;for(; first != last;++first)if(std::invoke(pred, std::invoke(proj, *first))) found = first;   if(!found)return{first, first};   return{*found, std::ranges::next(*found, last)};}   template<ranges::forward_range R, class Proj =std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred>constexprranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj ={})const{return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));}};   inlineconstexpr find_last_if_fn find_last_if;
find_last_if_not (5,6)
struct find_last_if_not_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred>constexprranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj ={})const{// Note: if I is mere forward_iterator, we may only go from begin to end.std::optional<I> found;for(; first != last;++first)if(!std::invoke(pred, std::invoke(proj, *first))) found = first;   if(!found)return{first, first};   return{*found, std::ranges::next(*found, last)};}   template<ranges::forward_range R, class Proj =std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred>constexprranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj ={})const{return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));}};   inlineconstexpr find_last_if_not_fn find_last_if_not;

[edit]Example

#include <algorithm>#include <cassert>#include <forward_list>#include <iomanip>#include <iostream>#include <string_view>   int main(){namespace ranges = std::ranges;   constexprstaticauto v ={1, 2, 3, 1, 2, 3, 1, 2};   {constexprauto i1 = ranges::find_last(v.begin(), v.end(), 3);constexprauto i2 = ranges::find_last(v, 3); static_assert(ranges::distance(v.begin(), i1.begin())==5); static_assert(ranges::distance(v.begin(), i2.begin())==5);}{constexprauto i1 = ranges::find_last(v.begin(), v.end(), -3);constexprauto i2 = ranges::find_last(v, -3); static_assert(i1.begin()== v.end()); static_assert(i2.begin()== v.end());}   auto abs =[](int x){return x <0?-x : x;};   {auto pred =[](int x){return x ==3;};constexprauto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin())==5); static_assert(ranges::distance(v.begin(), i2.begin())==5);}{auto pred =[](int x){return x ==-3;};constexprauto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if(v, pred, abs); static_assert(i1.begin()== v.end()); static_assert(i2.begin()== v.end());}   {auto pred =[](int x){return x ==1 or x ==2;};constexprauto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin())==5); static_assert(ranges::distance(v.begin(), i2.begin())==5);}{auto pred =[](int x){return x ==1 or x ==2 or x ==3;};constexprauto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs);constexprauto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(i1.begin()== v.end()); static_assert(i2.begin()== v.end());}   using P =std::pair<std::string_view, int>;std::forward_list<P> list {{"one", 1}, {"two", 2}, {"three", 3}, {"one", 4}, {"two", 5}, {"three", 6}, };auto cmp_one =[](conststd::string_view&s){return s =="one";};   // find latest element that satisfy the comparator, and projecting pair::firstconstauto subrange = ranges::find_last_if(list, cmp_one, &P::first);   std::cout<<"The found element and the tail after it are:\n";for(P const& e : subrange)std::cout<<'{'<<std::quoted(e.first)<<", "<< e.second<<"} ";std::cout<<'\n';   #if __cpp_lib_algorithm_default_value_typeconstauto i3 = ranges::find_last(list, {"three", 3});// (2) C++26#elseconstauto i3 = ranges::find_last(list, P{"three", 3});// (2) C++23#endifassert(i3.begin()->first =="three"&& i3.begin()->second ==3);}

Output:

The found element and the tail after it are: {"one", 4} {"two", 5} {"three", 6}

[edit]See also

finds the last sequence of elements in a certain range
(algorithm function object)[edit]
finds the first element satisfying specific criteria
(algorithm function object)[edit]
searches for the first occurrence of a range of elements
(algorithm function object)[edit]
returns true if one sequence is a subsequence of another
(algorithm function object)[edit]
determines if an element exists in a partially-ordered range
(algorithm function object)[edit]
checks if the range contains the given element or subrange
(algorithm function object)[edit]
close