std::ranges::copy_n, std::ranges::copy_n_result
Defined in header <algorithm> | ||
Call signature | ||
template<std::input_iterator I, std::weakly_incrementable O > requires std::indirectly_copyable<I, O> | (1) | (since C++20) |
Helper type | ||
template<class I, class O > using copy_n_result =ranges::in_out_result<I, O>; | (2) | (since C++20) |
[
0,
n)
. The behavior is undefined if result is within the range [
first,
first + n)
(ranges::copy_backward might be used instead in this case).The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first | - | the beginning of the range of elements to copy from |
n | - | number of the elements to copy |
result | - | the beginning of the destination range |
[edit]Return value
ranges::copy_n_result{first + n, result + n} or more formally, a value of type ranges::in_out_result that contains an input_iterator
iterator equals to ranges::next(first, n) and a weakly_incrementable
iterator equals to ranges::next(result, n).
[edit]Complexity
Exactly n assignments.
[edit]Notes
In practice, implementations of std::ranges::copy_n
may avoid multiple assignments and use bulk copy functions such as std::memmove if the value type is TriviallyCopyable and the iterator types satisfy contiguous_iterator
. Alternatively, such copy acceleration can be injected during an optimization phase of a compiler.
When copying overlapping ranges, std::ranges::copy_n
is appropriate when copying to the left (beginning of the destination range is outside the source range) while std::ranges::copy_backward is appropriate when copying to the right (end of the destination range is outside the source range).
[edit]Possible implementation
struct copy_n_fn {template<std::input_iterator I, std::weakly_incrementable O> requires std::indirectly_copyable<I, O>constexpr ranges::copy_n_result<I, O> operator()(I first, std::iter_difference_t<I> n, O result)const{for(; n-->0;(void)++first, (void)++result)*result =*first; return{std::move(first), std::move(result)};}}; inlineconstexpr copy_n_fn copy_n{}; |
[edit]Example
#include <algorithm>#include <iomanip>#include <iostream>#include <iterator>#include <string>#include <string_view> int main(){conststd::string_view in{"ABCDEFGH"};std::string out; std::ranges::copy_n(in.begin(), 4, std::back_inserter(out));std::cout<<std::quoted(out)<<'\n'; out ="abcdefgh";constauto res{std::ranges::copy_n(in.begin(), 5, out.begin())};constauto i{std::distance(std::begin(in), res.in)};constauto j{std::distance(std::begin(out), res.out)};std::cout<<"in["<< i <<"] = '"<< in[i]<<"'\n"<<"out["<< j <<"] = '"<< out[j]<<"'\n";}
Output:
"ABCD" in[5] = 'F' out[5] = 'f'
[edit]See also
(C++20)(C++20) | copies a range of elements to a new location (algorithm function object) |
(C++20) | copies a range of elements in backwards order (algorithm function object) |
(C++20)(C++20) | copies a range of elements omitting those that satisfy specific criteria (algorithm function object) |
(C++20)(C++20) | copies a range, replacing elements satisfying specific criteria with another value (algorithm function object) |
(C++20) | creates a copy of a range that is reversed (algorithm function object) |
(C++20) | copies and rotate a range of elements (algorithm function object) |
(C++20) | creates a copy of some range of elements that contains no consecutive duplicates (algorithm function object) |
(C++20) | moves a range of elements to a new location (algorithm function object) |
(C++20) | moves a range of elements to a new location in backwards order (algorithm function object) |
(C++11) | copies a number of elements to a new location (function template) |