Namespaces
Variants
Actions

std::ranges::lower_bound

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges(C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
lower_bound
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
(1)
template<std::forward_iterator I, std::sentinel_for<I> S,

          class T, class Proj =std::identity,
          std::indirect_strict_weak_order
              <const T*, std::projected<I, Proj>> Comp =ranges::less>
constexpr I lower_bound( I first, S last, const T& value,

                         Comp comp ={}, Proj proj ={});
(since C++20)
(until C++26)
template<std::forward_iterator I, std::sentinel_for<I> S,

          class Proj =std::identity,
          class T = std::projected_value_t<I, Proj>,
          std::indirect_strict_weak_order
              <const T*, std::projected<I, Proj>> Comp =ranges::less>
constexpr I lower_bound( I first, S last, const T& value,

                         Comp comp ={}, Proj proj ={});
(since C++26)
(2)
template<ranges::forward_range R,

          class T, class Proj =std::identity,
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp =ranges::less>
constexprranges::borrowed_iterator_t<R>

    lower_bound( R&& r, const T& value, Comp comp ={}, Proj proj ={});
(since C++20)
(until C++26)
template<ranges::forward_range R,

          class Proj =std::identity,
          class T = std::projected_value_t<ranges::iterator_t<R>, Proj>,
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp =ranges::less>
constexprranges::borrowed_iterator_t<R>

    lower_bound( R&& r, const T& value, Comp comp ={}, Proj proj ={});
(since C++26)
1) Returns an iterator pointing to the first element in the range [firstlast) that is not less than (i.e. greater or equal to) value, or last if no such element is found. The range [firstlast) must be partitioned with respect to the expression std::invoke(comp, std::invoke(proj, element), value), i.e., all elements for which the expression is true must precede all elements for which the expression is false. A fully-sorted range meets this criterion.
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit]Parameters

first, last - the iterator-sentinel pair defining the partially-ordered range of elements to examine
r - the partially-ordered range to examine
value - value to compare the projected elements to
comp - comparison predicate to apply to the projected elements
proj - projection to apply to the elements

[edit]Return value

Iterator pointing to the first element that is not less than value, or last if no such element is found.

[edit]Complexity

The number of comparisons and applications of the projection performed are logarithmic in the distance between first and last (at most log2(last - first) + O(1) comparisons and applications of the projection). However, for an iterator that does not model random_access_iterator, the number of iterator increments is linear.

[edit]Notes

On a range that's fully sorted (or more generally, partially ordered with respect to value) after projection, std::ranges::lower_bound implements the binary search algorithm. Therefore, std::ranges::binary_search can be implemented in terms of it.

Feature-test macroValueStdFeature
__cpp_lib_algorithm_default_value_type202403(C++26)List-initialization for algorithms (1,2)

[edit]Possible implementation

struct lower_bound_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, class T = std::projected_value_t<I, Proj>, std::indirect_strict_weak_order<const T*, std::projected<I, Proj>> Comp =ranges::less>constexpr I operator()(I first, S last, const T& value, Comp comp ={}, Proj proj ={})const{ I it;std::iter_difference_t<I> count, step; count = std::ranges::distance(first, last);   while(count >0){ it = first; step = count /2;ranges::advance(it, step, last);if(comp(std::invoke(proj, *it), value)){ first =++it; count -= step +1;}else count = step;}return first;}   template<ranges::forward_range R, class Proj =std::identity, class T = std::projected_value_t<ranges::iterator_t<R>, Proj>std::indirect_strict_weak_order<const T*, std::projected<ranges::iterator_t<R>, Proj>> Comp =ranges::less>constexprranges::borrowed_iterator_t<R> operator()(R&& r, const T& value, Comp comp ={}, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), value, std::ref(comp), std::ref(proj));}};   inlineconstexpr lower_bound_fn lower_bound;

[edit]Example

#include <algorithm>#include <cassert>#include <complex>#include <iostream>#include <iterator>#include <vector>   namespace ranges = std::ranges;   template<std::forward_iterator I, std::sentinel_for<I> S, class T, class Proj =std::identity, std::indirect_strict_weak_order<const T*, std::projected<I, Proj>> Comp =ranges::less>constexpr I binary_find(I first, S last, const T& value, Comp comp ={}, Proj proj ={}){ first = ranges::lower_bound(first, last, value, comp, proj);return first != last &&!comp(value, proj(*first))? first : last;}   int main(){std::vector data{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};// ^^^^^^^^^^auto lower = ranges::lower_bound(data, 4);auto upper =ranges::upper_bound(data, 4);   std::cout<<"found a range ["<<ranges::distance(data.cbegin(), lower)<<", "<<ranges::distance(data.cbegin(), upper)<<") = { ";ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));std::cout<<"}\n";   // classic binary search, returning a value only if it is present   data ={1, 2, 4, 8, 16};// ^auto it = binary_find(data.cbegin(), data.cend(), 8);// '5' would return end()   if(it != data.cend())std::cout<<*it <<" found at index "<<ranges::distance(data.cbegin(), it);   using CD =std::complex<double>;std::vector<CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}};auto cmpz =[](CD x, CD y){return x.real()< y.real();};#ifdef __cpp_lib_algorithm_default_value_typeauto it2 = ranges::lower_bound(nums, {2, 0}, cmpz);#elseauto it2 = ranges::lower_bound(nums, CD{2, 0}, cmpz);#endifassert((*it2 == CD{2, 2}));}

Output:

found a range [6, 10) = { 4 4 4 4 } 8 found at index 3

[edit]See also

returns range of elements matching a specific key
(algorithm function object)[edit]
divides a range of elements into two groups
(algorithm function object)[edit]
locates the partition point of a partitioned range
(algorithm function object)[edit]
returns an iterator to the first element greater than a certain value
(algorithm function object)[edit]
returns an iterator to the first element not less than the given value
(function template)[edit]
close