std::ranges::lower_bound
Defined in header <algorithm> | ||
Call signature | ||
(1) | ||
template<std::forward_iterator I, std::sentinel_for<I> S, class T, class Proj =std::identity, | (since C++20) (until C++26) | |
template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, | (since C++26) | |
(2) | ||
template<ranges::forward_range R, class T, class Proj =std::identity, | (since C++20) (until C++26) | |
template<ranges::forward_range R, class Proj =std::identity, | (since C++26) | |
[
first,
last)
that is not less than (i.e. greater or equal to) value, or last if no such element is found. The range [
first,
last)
must be partitioned with respect to the expression std::invoke(comp, std::invoke(proj, element), value), i.e., all elements for which the expression is true must precede all elements for which the expression is false. A fully-sorted range meets this criterion.The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit]Parameters
first, last | - | the iterator-sentinel pair defining the partially-ordered range of elements to examine |
r | - | the partially-ordered range to examine |
value | - | value to compare the projected elements to |
comp | - | comparison predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
[edit]Return value
Iterator pointing to the first element that is not less than value, or last if no such element is found.
[edit]Complexity
The number of comparisons and applications of the projection performed are logarithmic in the distance between first and last (at most log2(last - first) + O(1) comparisons and applications of the projection). However, for an iterator that does not model random_access_iterator
, the number of iterator increments is linear.
[edit]Notes
On a range that's fully sorted (or more generally, partially ordered with respect to value) after projection, std::ranges::lower_bound
implements the binary search algorithm. Therefore, std::ranges::binary_search can be implemented in terms of it.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_algorithm_default_value_type | 202403 | (C++26) | List-initialization for algorithms (1,2) |
[edit]Possible implementation
struct lower_bound_fn {template<std::forward_iterator I, std::sentinel_for<I> S, class Proj =std::identity, class T = std::projected_value_t<I, Proj>, std::indirect_strict_weak_order<const T*, std::projected<I, Proj>> Comp =ranges::less>constexpr I operator()(I first, S last, const T& value, Comp comp ={}, Proj proj ={})const{ I it;std::iter_difference_t<I> count, step; count = std::ranges::distance(first, last); while(count >0){ it = first; step = count /2;ranges::advance(it, step, last);if(comp(std::invoke(proj, *it), value)){ first =++it; count -= step +1;}else count = step;}return first;} template<ranges::forward_range R, class Proj =std::identity, class T = std::projected_value_t<ranges::iterator_t<R>, Proj>std::indirect_strict_weak_order<const T*, std::projected<ranges::iterator_t<R>, Proj>> Comp =ranges::less>constexprranges::borrowed_iterator_t<R> operator()(R&& r, const T& value, Comp comp ={}, Proj proj ={})const{return(*this)(ranges::begin(r), ranges::end(r), value, std::ref(comp), std::ref(proj));}}; inlineconstexpr lower_bound_fn lower_bound; |
[edit]Example
#include <algorithm>#include <cassert>#include <complex>#include <iostream>#include <iterator>#include <vector> namespace ranges = std::ranges; template<std::forward_iterator I, std::sentinel_for<I> S, class T, class Proj =std::identity, std::indirect_strict_weak_order<const T*, std::projected<I, Proj>> Comp =ranges::less>constexpr I binary_find(I first, S last, const T& value, Comp comp ={}, Proj proj ={}){ first = ranges::lower_bound(first, last, value, comp, proj);return first != last &&!comp(value, proj(*first))? first : last;} int main(){std::vector data{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};// ^^^^^^^^^^auto lower = ranges::lower_bound(data, 4);auto upper =ranges::upper_bound(data, 4); std::cout<<"found a range ["<<ranges::distance(data.cbegin(), lower)<<", "<<ranges::distance(data.cbegin(), upper)<<") = { ";ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));std::cout<<"}\n"; // classic binary search, returning a value only if it is present data ={1, 2, 4, 8, 16};// ^auto it = binary_find(data.cbegin(), data.cend(), 8);// '5' would return end() if(it != data.cend())std::cout<<*it <<" found at index "<<ranges::distance(data.cbegin(), it); using CD =std::complex<double>;std::vector<CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}};auto cmpz =[](CD x, CD y){return x.real()< y.real();};#ifdef __cpp_lib_algorithm_default_value_typeauto it2 = ranges::lower_bound(nums, {2, 0}, cmpz);#elseauto it2 = ranges::lower_bound(nums, CD{2, 0}, cmpz);#endifassert((*it2 == CD{2, 2}));}
Output:
found a range [6, 10) = { 4 4 4 4 } 8 found at index 3
[edit]See also
(C++20) | returns range of elements matching a specific key (algorithm function object) |
(C++20) | divides a range of elements into two groups (algorithm function object) |
(C++20) | locates the partition point of a partitioned range (algorithm function object) |
(C++20) | returns an iterator to the first element greater than a certain value (algorithm function object) |
returns an iterator to the first element not less than the given value (function template) |