Namespaces
Variants
Actions

std::acos(std::complex)

From cppreference.com
< cpp‎ | numeric‎ | complex
 
 
 
 
Defined in header <complex>
template<class T >
complex<T> acos(const complex<T>& z );
(since C++11)

Computes complex arc cosine of a complex value z. Branch cuts exist outside the interval [−1, +1] along the real axis.

Contents

[edit]Parameters

z - complex value

[edit]Return value

If no errors occur, complex arc cosine of z is returned, in the range of a strip unbounded along the imaginary axis and in the interval [0, +π] along the real axis.

[edit]Error handling and special values

Errors are reported consistent with math_errhandling.

If the implementation supports IEEE floating-point arithmetic,

  • std::acos(std::conj(z))==std::conj(std::acos(z))
  • If z is (±0,+0), the result is (π/2,-0)
  • If z is (±0,NaN), the result is (π/2,NaN)
  • If z is (x,+∞) (for any finite x), the result is (π/2,-∞)
  • If z is (x,NaN) (for any nonzero finite x), the result is (NaN,NaN) and FE_INVALID may be raised.
  • If z is (-∞,y) (for any positive finite y), the result is (π,-∞)
  • If z is (+∞,y) (for any positive finite y), the result is (+0,-∞)
  • If z is (-∞,+∞), the result is (3π/4,-∞)
  • If z is (+∞,+∞), the result is (π/4,-∞)
  • If z is (±∞,NaN), the result is (NaN,±∞) (the sign of the imaginary part is unspecified)
  • If z is (NaN,y) (for any finite y), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (NaN,+∞), the result is (NaN,-∞)
  • If z is (NaN,NaN), the result is (NaN,NaN)

[edit]Notes

Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1) and (1,∞) of the real axis.

The mathematical definition of the principal value of arc cosine is acos z =
1
2
π + iln(iz + 1-z2
)
.

For any z, acos(z) = π - acos(-z).

[edit]Example

#include <cmath>#include <complex>#include <iostream>   int main(){std::cout<<std::fixed;std::complex<double> z1(-2.0, 0.0);std::cout<<"acos"<< z1 <<" = "<<std::acos(z1)<<'\n';   std::complex<double> z2(-2.0, -0.0);std::cout<<"acos"<< z2 <<" (the other side of the cut) = "<<std::acos(z2)<<'\n';   // for any z, acos(z) = pi - acos(-z)constdouble pi =std::acos(-1);std::complex<double> z3 = pi -std::acos(z2);std::cout<<"cos(pi - acos"<< z2 <<") = "<<std::cos(z3)<<'\n';}

Output:

acos(-2.000000,0.000000) = (3.141593,-1.316958) acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958) cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)

[edit]See also

computes arc sine of a complex number (arcsin(z))
(function template)[edit]
computes arc tangent of a complex number (arctan(z))
(function template)[edit]
computes cosine of a complex number (cos(z))
(function template)[edit]
(C++11)(C++11)
computes arc cosine (arccos(x))
(function)[edit]
applies the function std::acos to each element of valarray
(function template)[edit]
C documentation for cacos
close