Namespaces
Variants
Actions

std::norm(std::complex)

From cppreference.com
< cpp‎ | numeric‎ | complex
 
 
 
 
Defined in header <complex>
(1)
template<class T >
T norm(conststd::complex<T>& z );
(until C++20)
template<class T >
constexpr T norm(conststd::complex<T>& z );
(since C++20)
Defined in header <complex>
(A)
float       norm(float f );

double      norm(double f );

longdouble norm(longdouble f );
(until C++20)
constexprfloat       norm(float f );

constexprdouble      norm(double f );

constexprlongdouble norm(longdouble f );
(since C++20)
(until C++23)
template<class FloatingPoint >
constexpr FloatingPoint norm( FloatingPoint f );
(since C++23)
(B)
template<class Integer >
double norm( Integer i );
(until C++20)
template<class Integer >
constexprdouble norm( Integer i );
(since C++20)
1) Returns the squared magnitude of the complex number z.
A,B) Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
(since C++11)

Contents

[edit]Parameters

z - complex value
f - floating-point value
i - integer value

[edit]Return value

1) The squared magnitude of z.
A) The square of f.
B) The square of i.

[edit]Notes

The norm calculated by this function is also known as field norm or absolute square.

The Euclidean norm of a complex number is provided by std::abs, which is more costly to compute. In some situations, it may be replaced by std::norm, for example, if abs(z1)> abs(z2) then norm(z1)> norm(z2).

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num:

  • If num has a standard(until C++23) floating-point type T, then std::norm(num) has the same effect as std::norm(std::complex<T>(num)).
  • Otherwise, if num has an integer type, then std::norm(num) has the same effect as std::norm(std::complex<double>(num)).

[edit]Example

#include <cassert>#include <complex>#include <iostream>   int main(){constexprstd::complex<double> z {3.0, 4.0}; static_assert(std::norm(z)==(z.real()* z.real()+ z.imag()* z.imag())); static_assert(std::norm(z)==(z *std::conj(z)));assert(std::norm(z)==(std::abs(z)* std::abs(z)));std::cout<<"std::norm("<< z <<") = "<< std::norm(z)<<'\n';}

Output:

std::norm((3,4)) = 25

[edit]See also

returns the magnitude of a complex number
(function template)[edit]
returns the complex conjugate
(function template)[edit]
constructs a complex number from magnitude and phase angle
(function template)[edit]
close