Namespaces
Variants
Actions

std::acos, std::acosf, std::acosl

From cppreference.com
< cpp‎ | numeric‎ | math
 
 
 
 
Defined in header <cmath>
(1)
float       acos (float num );

double      acos (double num );

longdouble acos (longdouble num );
(until C++23)
/*floating-point-type*/
            acos (/*floating-point-type*/ num );
(since C++23)
(constexpr since C++26)
float       acosf(float num );
(2)(since C++11)
(constexpr since C++26)
longdouble acosl(longdouble num );
(3)(since C++11)
(constexpr since C++26)
SIMD overload(since C++26)
Defined in header <simd>
template</*math-floating-point*/ V >

constexpr/*deduced-simd-t*/<V>

            acos (const V& v_num );
(S) (since C++26)
Defined in header <cmath>
template<class Integer >
double      acos ( Integer num );
(A)(constexpr since C++26)
1-3) Computes the principal value of the arc cosine of num. The library provides overloads of std::acos for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
S) The SIMD overload performs an element-wise std::acos on v_num.
(See math-floating-point and deduced-simd-t for their definitions.)
(since C++26)
A) Additional overloads are provided for all integer types, which are treated as double.
(since C++11)

Contents

[edit]Parameters

num - floating-point or integer value

[edit]Return value

If no errors occur, the arc cosine of num (arccos(num)) in the range [0, π], is returned.

If a domain error occurs, an implementation-defined value is returned (NaN where supported).

If a range error occurs due to underflow, the correct result (after rounding) is returned.

[edit]Error handling

Errors are reported as specified in math_errhandling.

Domain error occurs if num is outside the range [-1.01.0].

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is +1, the value +0 is returned.
  • If |num| > 1, a domain error occurs and NaN is returned.
  • if the argument is NaN, NaN is returned.

[edit]Notes

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::acos(num) has the same effect as std::acos(static_cast<double>(num)).

[edit]Example

#include <cerrno>#include <cfenv>#include <cmath>#include <cstring>#include <iostream>   // #pragma STDC FENV_ACCESS ON   int main(){std::cout<<"acos(-1) = "<< std::acos(-1)<<'\n'<<"acos(0.0) = "<< std::acos(0.0)<<'\n'<<"2*acos(0.0) = "<<2* std::acos(0)<<'\n'<<"acos(0.5) = "<< std::acos(0.5)<<'\n'<<"3*acos(0.5) = "<<3* std::acos(0.5)<<'\n'<<"acos(1) = "<< std::acos(1)<<'\n';   // error handlingerrno=0;std::feclearexcept(FE_ALL_EXCEPT);   std::cout<<"acos(1.1) = "<< std::acos(1.1)<<'\n';   if(errno==EDOM)std::cout<<" errno == EDOM: "<<std::strerror(errno)<<'\n';if(std::fetestexcept(FE_INVALID))std::cout<<" FE_INVALID raised"<<'\n';}

Output:

acos(-1) = 3.14159 acos(0.0) = 1.5708 2*acos(0.0) = 3.14159 acos(0.5) = 1.0472 3*acos(0.5) = 3.14159 acos(1) = 0 acos(1.1) = nan errno == EDOM: Numerical argument out of domain FE_INVALID raised

[edit]See also

(C++11)(C++11)
computes arc sine (arcsin(x))
(function)[edit]
(C++11)(C++11)
computes arc tangent (arctan(x))
(function)[edit]
(C++11)(C++11)
arc tangent, using signs to determine quadrants
(function)[edit]
(C++11)(C++11)
computes cosine (cos(x))
(function)[edit]
computes arc cosine of a complex number (arccos(z))
(function template)[edit]
applies the function std::acos to each element of valarray
(function template)[edit]
close