Namespaces
Variants
Actions

Mathematical constants

From cppreference.com
< cpp‎ | numeric

Contents

[edit]Constants (since C++20)

Defined in header <numbers>
Defined in namespace std::numbers
e_v
the mathematical constant e
(variable template)
log2e_v
log2e
(variable template)
log10e_v
log10e
(variable template)
pi_v
the mathematical constant π
(variable template)
inv_pi_v
1
π

(variable template)
inv_sqrtpi_v
1
π

(variable template)
ln2_v
ln 2
(variable template)
ln10_v
ln 10
(variable template)
sqrt2_v
2
(variable template)
sqrt3_v
3
(variable template)
inv_sqrt3_v
1
3

(variable template)
egamma_v
the Euler–Mascheroni constant γ
(variable template)
phi_v
the golden ratio Φ (
1 + 5
2
)
(variable template)
inline constexpr double e
e_v<double>
(constant)
inline constexpr double log2e
log2e_v<double>
(constant)
inline constexpr double log10e
log10e_v<double>
(constant)
inline constexpr double pi
pi_v<double>
(constant)
inline constexpr double inv_pi
inv_pi_v<double>
(constant)
inline constexpr double inv_sqrtpi
inv_sqrtpi_v<double>
(constant)
inline constexpr double ln2
ln2_v<double>
(constant)
inline constexpr double ln10
ln10_v<double>
(constant)
inline constexpr double sqrt2
sqrt2_v<double>
(constant)
inline constexpr double sqrt3
sqrt3_v<double>
(constant)
inline constexpr double inv_sqrt3
inv_sqrt3_v<double>
(constant)
inline constexpr double egamma
egamma_v<double>
(constant)
inline constexpr double phi
phi_v<double>
(constant)

[edit]Notes

A program that instantiates a primary template of a mathematical constant variable template is ill-formed.

The standard library specializes mathematical constant variable templates for all floating-point types (i.e. float, double, longdouble, and fixed width floating-point types(since C++23)).

A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.

Feature-test macroValueStdFeature
__cpp_lib_math_constants201907L(C++20)Mathematical constants

[edit]Example

#include <cmath>#include <iomanip>#include <iostream>#include <limits>#include <numbers>#include <string_view>   auto egamma_aprox(constunsigned iterations){longdouble s{};for(unsigned m{2}; m != iterations;++m)if(constlongdouble t{std::riemann_zetal(m)/ m}; m %2) s -= t;else s += t;return s;};   int main(){usingnamespace std::numbers;usingnamespace std::string_view_literals;   constauto x =std::sqrt(inv_pi)/ inv_sqrtpi +std::ceil(std::exp2(log2e))+ sqrt3 * inv_sqrt3 +std::exp(0);constauto v =(phi * phi - phi)+1/std::log2(sqrt2)+ log10e * ln10 +std::pow(e, ln2)-std::cos(pi);std::cout<<"The answer is "<< x * v <<'\n';   constexprauto γ{"0.577215664901532860606512090082402"sv};std::cout<<"γ as 10⁶ sums of ±ζ(m)/m = "<< egamma_aprox(1'000'000)<<'\n'<<"γ as egamma_v<float> = "<<std::setprecision(std::numeric_limits<float>::digits10+1)<< egamma_v<float><<'\n'<<"γ as egamma_v<double> = "<<std::setprecision(std::numeric_limits<double>::digits10+1)<< egamma_v<double><<'\n'<<"γ as egamma_v<long double> = "<<std::setprecision(std::numeric_limits<longdouble>::digits10+1)<< egamma_v<longdouble><<'\n'<<"γ with "<< γ.length()-1<<" digits precision = "<< γ <<'\n';}

Possible output:

The answer is 42 γ as 10⁶ sums of ±ζ(m)/m = 0.577215 γ as egamma_v<float> = 0.5772157 γ as egamma_v<double> = 0.5772156649015329 γ as egamma_v<long double> = 0.5772156649015328606 γ with 34 digits precision = 0.577215664901532860606512090082402

[edit]See also

(C++11)
represents exact rational fraction
(class template)[edit]
close