Namespaces
Variants
Actions

std::conj(std::complex)

From cppreference.com
< cpp‎ | numeric‎ | complex
 
 
 
 
Defined in header <complex>
(1)
template<class T >
std::complex<T> conj(conststd::complex<T>& z );
(until C++20)
template<class T >
constexprstd::complex<T> conj(conststd::complex<T>& z );
(since C++20)
Defined in header <complex>
(A)
std::complex<float>       conj(float f );

std::complex<double>      conj(double f );

std::complex<longdouble> conj(longdouble f );
(until C++20)
constexprstd::complex<float>       conj(float f );

constexprstd::complex<double>      conj(double f );

constexprstd::complex<longdouble> conj(longdouble f );
(since C++20)
(until C++23)
template<class FloatingPoint >
constexprstd::complex<FloatingPoint> conj( FloatingPoint f );
(since C++23)
(B)
template<class Integer >
constexprstd::complex<double> conj( Integer i );
(until C++20)
template<class Integer >
constexprstd::complex<double> conj( Integer i );
(since C++20)
1) Computes the complex conjugate of z by reversing the sign of the imaginary part.
A,B) Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
(since C++11)

Contents

[edit]Parameters

z - complex value
f - floating-point value
i - integer value

[edit]Return value

1) The complex conjugate of z.
B)std::complex<double>(i).

[edit]Notes

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num:

  • If num has a standard(until C++23) floating-point type T, then std::conj(num) has the same effect as std::conj(std::complex<T>(num)).
  • Otherwise, if num has an integer type, then std::conj(num) has the same effect as std::conj(std::complex<double>(num)).

[edit]Example

#include <complex>#include <iostream>   int main(){std::complex<double> z(1.0, 2.0);std::cout<<"The conjugate of "<< z <<" is "<< std::conj(z)<<'\n'<<"Their product is "<< z * std::conj(z)<<'\n';}

Output:

The conjugate of (1,2) is (1,-2) Their product is (5,0)

[edit]See also

returns the magnitude of a complex number
(function template)[edit]
returns the squared magnitude
(function template)[edit]
constructs a complex number from magnitude and phase angle
(function template)[edit]
close