std::forward_like
Defined in header <utility> | ||
template<class T, class U > constexprauto&& forward_like( U&& x )noexcept; | (since C++23) | |
Returns a reference to x which has similar properties to T&&
.
The return type is determined as below:
- If std::remove_reference_t<T> is a const-qualified type, then the referenced type of the return type is conststd::remove_reference_t<U>. Otherwise, the referenced type is std::remove_reference_t<U>.
- If
T&&
is an lvalue reference type, then the return type is also an lvalue reference type. Otherwise, the return type is an rvalue reference type.
If T
is not a referenceable type, the program is ill-formed.
Contents |
[edit]Parameters
x | - | a value needs to be forwarded like type T |
[edit]Return value
A reference to x of the type determined as above.
[edit]Notes
Like std::forward, std::move, and std::as_const, std::forward_like
is a type cast that only influences the value category of an expression, or potentially adds const-qualification.
When m
is an actual member and thus o.m a valid expression, this is usually spelled as std::forward<decltype(o)>(o).m in C++20 code.
This leads to three possible models, called merge, tuple, and language.
- merge: merge the const qualifiers, and adopt the value category of the
Owner
. - tuple: what std::get<0>(Owner) does, assuming
Owner
is a std::tuple<Member>. - language: what std::forward<decltype(Owner)>(o).m does.
The main scenario that std::forward_like
caters to is adapting “far” objects. Neither the tuple nor the language scenarios do the right thing for that main use-case, so the merge model is used for std::forward_like
.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_forward_like | 202207L | (C++23) | std::forward_like |
[edit]Possible implementation
template<class T, class U>constexprauto&& forward_like(U&& x)noexcept{constexprbool is_adding_const =std::is_const_v<std::remove_reference_t<T>>;ifconstexpr(std::is_lvalue_reference_v<T&&>){ifconstexpr(is_adding_const)returnstd::as_const(x);elsereturnstatic_cast<U&>(x);}else{ifconstexpr(is_adding_const)return std::move(std::as_const(x));elsereturn std::move(x);}} |
[edit]Example
#include <cstddef>#include <iostream>#include <memory>#include <optional>#include <type_traits>#include <utility>#include <vector> struct TypeTeller {void operator()(this auto&& self){using SelfType = decltype(self);using UnrefSelfType =std::remove_reference_t<SelfType>;ifconstexpr(std::is_lvalue_reference_v<SelfType>){ifconstexpr(std::is_const_v<UnrefSelfType>)std::cout<<"const lvalue\n";elsestd::cout<<"mutable lvalue\n";}else{ifconstexpr(std::is_const_v<UnrefSelfType>)std::cout<<"const rvalue\n";elsestd::cout<<"mutable rvalue\n";}}}; struct FarStates {std::unique_ptr<TypeTeller> ptr;std::optional<TypeTeller> opt;std::vector<TypeTeller> container; auto&& from_opt(this auto&& self){return std::forward_like<decltype(self)>(self.opt.value());// It is OK to use std::forward<decltype(self)>(self).opt.value(),// because std::optional provides suitable accessors.} auto&& operator[](this auto&& self, std::size_t i){return std::forward_like<decltype(self)>(self.container.at(i));// It is not so good to use std::forward<decltype(self)>(self)[i], because// containers do not provide rvalue subscript access, although they could.} auto&& from_ptr(this auto&& self){if(!self.ptr)throwstd::bad_optional_access{};return std::forward_like<decltype(self)>(*self.ptr);// It is not good to use *std::forward<decltype(self)>(self).ptr, because// std::unique_ptr<TypeTeller> always dereferences to a non-const lvalue.}}; int main(){ FarStates my_state { .ptr{std::make_unique<TypeTeller>()}, .opt{std::in_place, TypeTeller{}}, .container{std::vector<TypeTeller>(1)}, }; my_state.from_ptr()(); my_state.from_opt()(); my_state[0](); std::cout<<'\n'; std::as_const(my_state).from_ptr()();std::as_const(my_state).from_opt()();std::as_const(my_state)[0](); std::cout<<'\n'; std::move(my_state).from_ptr()(); std::move(my_state).from_opt()(); std::move(my_state)[0](); std::cout<<'\n'; std::move(std::as_const(my_state)).from_ptr()(); std::move(std::as_const(my_state)).from_opt()(); std::move(std::as_const(my_state))[0](); std::cout<<'\n';}
Output:
mutable lvalue mutable lvalue mutable lvalue const lvalue const lvalue const lvalue mutable rvalue mutable rvalue mutable rvalue const rvalue const rvalue const rvalue
[edit]See also
(C++11) | converts the argument to an xvalue (function template) |
(C++11) | forwards a function argument and use the type template argument to preserve its value category (function template) |
(C++17) | obtains a reference to const to its argument (function template) |