Namespaces
Variants
Actions

std::apply

From cppreference.com
< cpp‎ | utility
 
 
 
Defined in header <tuple>
template<class F, class Tuple >
constexpr decltype(auto) apply( F&& f, Tuple&& t );
(since C++17)
(until C++23)
template<class F, tuple-like Tuple >
constexpr decltype(auto) apply( F&& f, Tuple&& t )noexcept(/* see below */);
(since C++23)

Invoke the Callable object f with the elements of t as arguments.

Given the exposition-only function apply-impl defined as follows:

template<class F,class Tuple, std::size_t... I>
constexpr decltype(auto)
    apply-impl(F&& f, Tuple&& t, std::index_sequence<I...>)// exposition only
{
    return INVOKE(std::forward<F>(f), std::get<I>(std::forward<Tuple>(t))...);
}

The effect is equivalent to:

return apply-impl(std::forward<F>(f), std::forward<Tuple>(t),
                  std::make_index_sequence<
                      std::tuple_size_v<std::decay_t<Tuple>>>{});
.

Contents

[edit]Parameters

f - Callable object to be invoked
t - tuple whose elements to be used as arguments to f

[edit]Return value

The value returned by f.

[edit]Exceptions

(none)

(until C++23)
noexcept specification:  
noexcept(

    noexcept(std::invoke(std::forward<F>(f),
                         std::get<Is>(std::forward<Tuple>(t))...))

)

where Is... denotes the pack:

(since C++23)

[edit]Notes

Tuple need not be std::tuple, and instead may be anything that supports std::get and std::tuple_size; in particular, std::array and std::pair may be used.

(until C++23)

Tuple is constrained to be tuple-like, i.e. each type therein is required to be a specialization of std::tuple or another type (such as std::array and std::pair) that models tuple-like.

(since C++23)
Feature-test macroValueStdFeature
__cpp_lib_apply201603L(C++17)std::apply

[edit]Example

#include <iostream>#include <tuple>#include <utility>   int add(int first, int second){return first + second;}   template<typename T> T add_generic(T first, T second){return first + second;}   auto add_lambda =[](auto first, auto second){return first + second;};   template<typename... Ts>std::ostream& operator<<(std::ostream& os, std::tuple<Ts...>const& theTuple){ std::apply([&os](Ts const&... tupleArgs){ os <<'[';std::size_t n{0};((os << tupleArgs <<(++n != sizeof...(Ts)?", ":"")), ...); os <<']';}, theTuple );return os;}   int main(){// OKstd::cout<< std::apply(add, std::pair(1, 2))<<'\n';   // Error: can't deduce the function type// std::cout << std::apply(add_generic, std::make_pair(2.0f, 3.0f)) << '\n';    // OKstd::cout<< std::apply(add_lambda, std::pair(2.0f, 3.0f))<<'\n';   // advanced examplestd::tuple myTuple{25, "Hello", 9.31f, 'c'};std::cout<< myTuple <<'\n';}

Output:

3 5 [25, Hello, 9.31, c]

[edit]See also

(C++11)
creates a tuple object of the type defined by the argument types
(function template)[edit]
creates a tuple of forwarding references
(function template)[edit]
construct an object with a tuple of arguments
(function template)[edit]
(C++17)(C++23)
invokes any Callable object with given arguments and possibility to specify return type(since C++23)
(function template)[edit]
close