Namespaces
Variants
Actions

std::is_const

From cppreference.com
< cpp‎ | types
 
 
Metaprogramming library
Type traits
Type categories
(C++11)
(C++11)(DR*)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11) 
Type properties
is_const
(C++11)
(C++11)
(C++14)
(C++11)(deprecated in C++26)
(C++11)(until C++20*)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
(C++17)
Supported operations
Relationships and property queries
Type modifications
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
(C++11)(until C++20*)(C++17)

Compile-time rational arithmetic
Compile-time integer sequences
 
Defined in header <type_traits>
template<class T >
struct is_const;
(since C++11)

std::is_const is a UnaryTypeTrait.

If T is a const-qualified type (that is, const, or constvolatile), provides the member constant value equal to true. For any other type, value is false.

If the program adds specializations for std::is_const or std::is_const_v, the behavior is undefined.

Contents

[edit]Template parameters

T - a type to check

[edit]Helper variable template

template<class T >
constexprbool is_const_v = is_const<T>::value;
(since C++17)

Inherited from std::integral_constant

Member constants

value
[static]
true if T is a const-qualified type, false otherwise
(public static member constant)

Member functions

operator bool
converts the object to bool, returns value
(public member function)
operator()
(C++14)
returns value
(public member function)

Member types

Type Definition
value_typebool
typestd::integral_constant<bool, value>

[edit]Notes

If T is a reference type then is_const<T>::value is always false. The proper way to check a potentially-reference type for constness is to remove the reference: is_const<typename remove_reference<T>::type>.

[edit]Possible implementation

template<class T>struct is_const :std::false_type{};template<class T>struct is_const<const T>:std::true_type{};

[edit]Example

#include <type_traits>   static_assert(std::is_same_v<constint*, intconst*>, "Remember, constness binds tightly inside pointers."); static_assert(!std::is_const_v<int>); static_assert(std::is_const_v<constint>); static_assert(!std::is_const_v<int*>); static_assert(std::is_const_v<int*const>, "Because the pointer itself can't be changed but the int pointed at can."); static_assert(!std::is_const_v<constint*>, "Because the pointer itself can be changed but not the int pointed at."); static_assert(!std::is_const_v<constint&>); static_assert(std::is_const_v<std::remove_reference_t<constint&>>);   struct S {void foo()const{}void bar()const{}};   int main(){// A const member function is const in a different way:   static_assert(!std::is_const_v<decltype(&S::foo)>, "Because &S::foo is a pointer.");   using S_mem_fun_ptr =void(S::*)()const;   S_mem_fun_ptr sfp =&S::foo; sfp =&S::bar;// OK, can be re-pointed static_assert(!std::is_const_v<decltype(sfp)>, "Because sfp is the same pointer type and thus can be re-pointed.");   const S_mem_fun_ptr csfp =&S::foo;// csfp = &S::bar; // Error static_assert(std::is_const_v<decltype(csfp)>, "Because csfp cannot be re-pointed.");}

[edit]See also

checks if a type is volatile-qualified
(class template)[edit]
(C++17)
obtains a reference to const to its argument
(function template)[edit]
close