Namespaces
Variants
Actions

std::tuple_element

From cppreference.com
< cpp‎ | utility
 
 
 
Defined in header <tuple>
Defined in header <array>
Defined in header <utility>
Defined in header <ranges>
(since C++20)
Defined in header <complex>
(since C++26)
template<std::size_t I, class T >
struct tuple_element;// not defined
(1) (since C++11)
template<std::size_t I, class T >

struct tuple_element< I, const T >{
    using type =typename
        std::add_const<typename std::tuple_element<I, T>::type>::type;

};
(2) (since C++11)
template<std::size_t I, class T >

struct tuple_element< I, volatile T >{
    using type =typename
        std::add_volatile<typename std::tuple_element<I, T>::type>::type;

};
(3) (since C++11)
(deprecated in C++20)
template<std::size_t I, class T >

struct tuple_element< I, constvolatile T >{
    using type =typename
        std::add_cv<typename std::tuple_element<I, T>::type>::type;

};
(4) (since C++11)
(deprecated in C++20)

Provides compile-time indexed access to the types of the elements of a tuple-like type.

1) The primary template is not defined. An explicit (full) or partial specialization is required to make a type tuple-like.
2-4) Specializations for cv-qualified types simply add corresponding cv-qualifiers by default.

std::tuple_element interacts with the core language: it can provide structured binding support in the tuple-like case.

(since C++17)

Contents

[edit]Specializations

The standard library provides following specializations for standard library types:

obtains the type of the specified element
(class template specialization)[edit]
obtains the type of the elements of pair
(class template specialization)[edit]
obtains the type of the elements of array
(class template specialization)[edit]
obtains the type of the iterator or the sentinel of a std::ranges::subrange
(class template specialization)[edit]
obtains the underlying real and imaginary number type of a std::complex
(class template specialization)[edit]

Users may specialize std::tuple_element for program-defined types to make them tuple-like.

In normal cases where the get functions returns reference members or reference to subobjects, only specializations for cv-unqualified types are needed to be customized.

[edit]Member types

Member type Definition
type for a standard specialization, the type of Ith element of the tuple-like type T, where I is in [0std::tuple_size<T>::value)

[edit]Helper types

Defined in header <tuple>
template<std::size_t I, class T >
using tuple_element_t =typename tuple_element<I, T>::type;
(since C++14)

[edit]Notes

Feature-test macroValueStdFeature
__cpp_lib_tuple_element_t201402L(C++14)std::tuple_element_t

[edit]Example

#include <array>#include <cstddef>#include <iostream>#include <ranges>#include <tuple>#include <type_traits>#include <utility>   template<typename T1, typename T2, typename T3>struct Triple { T1 t1; T2 t2; T3 t3;};   // A specialization of std::tuple_element for program-defined type Triple:template<std::size_t I, typename T1, typename T2, typename T3>struct std::tuple_element<I, Triple<T1, T2, T3>>{ static_assert(false, "Invalid index");};template<typename T1, typename T2, typename T3>struct std::tuple_element<0, Triple<T1, T2, T3>>{using type = T1;};template<typename T1, typename T2, typename T3>struct std::tuple_element<1, Triple<T1, T2, T3>>{using type = T2;};template<typename T1, typename T2, typename T3>struct std::tuple_element<2, Triple<T1, T2, T3>>{using type = T3;};     template<typename... Args>struct TripleTypes { static_assert(3== sizeof...(Args), "Expected exactly 3 type names");template<std::size_t N>using type =typename std::tuple_element_t<N, Triple<Args...>>;};   int main(){ TripleTypes<char, int, float>::type<1> i{42};std::cout<< i <<'\n';   using Tri = Triple<int, char, short>;//< Program-defined type static_assert(std::is_same_v<std::tuple_element_t<0, Tri>, int>&&std::is_same_v<std::tuple_element_t<1, Tri>, char>&&std::is_same_v<std::tuple_element_t<2, Tri>, short>);   using Tuple =std::tuple<int, char, short>; static_assert(std::is_same_v<std::tuple_element_t<0, Tuple>, int>&&std::is_same_v<std::tuple_element_t<1, Tuple>, char>&&std::is_same_v<std::tuple_element_t<2, Tuple>, short>);   using Array3 =std::array<int, 3>; static_assert(std::is_same_v<std::tuple_element_t<0, Array3>, int>&&std::is_same_v<std::tuple_element_t<1, Array3>, int>&&std::is_same_v<std::tuple_element_t<2, Array3>, int>);   using Pair =std::pair<Tuple, Tri>; static_assert(std::is_same_v<std::tuple_element_t<0, Pair>, Tuple>&&std::is_same_v<std::tuple_element_t<1, Pair>, Tri>);   using Sub = std::ranges::subrange<int*, int*>; static_assert(std::is_same_v<std::tuple_element_t<0, Sub>, int*>&&std::is_same_v<std::tuple_element_t<1, Sub>, int*>);}

Output:

42

[edit]Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 2212C++11 specializations for cv types were not required in some headers, which led to ambiguity required

[edit]See also

Structured binding(C++17) binds the specified names to sub-objects or tuple elements of the initializer[edit]
(C++11)
obtains the number of elements of a tuple-like type
(class template)[edit]
(C++11)
creates a tuple by concatenating any number of tuples
(function template)[edit]
close