std::assoc_legendre, std::assoc_legendref, std::assoc_legendrel
Defined in header <cmath> | ||
(1) | ||
float assoc_legendre (unsignedint n, unsignedint m, float x ); double assoc_legendre (unsignedint n, unsignedint m, double x ); | (since C++17) (until C++23) | |
/* floating-point-type */ assoc_legendre(unsignedint n, unsignedint m, /* floating-point-type */ x ); | (since C++23) | |
float assoc_legendref(unsignedint n, unsignedint m, float x ); | (2) | (since C++17) |
longdouble assoc_legendrel(unsignedint n, unsignedint m, longdouble x ); | (3) | (since C++17) |
Defined in header <cmath> | ||
template<class Integer > double assoc_legendre (unsignedint n, unsignedint m, Integer x ); | (A) | (since C++17) |
std::assoc_legendre
for all cv-unqualified floating-point types as the type of the parameter x.(since C++23)Contents |
[edit]Parameters
n | - | the degree of the polynomial, an unsigned integer value |
m | - | the order of the polynomial, an unsigned integer value |
x | - | the argument, a floating-point or integer value |
[edit]Return value
If no errors occur, value of the associated Legendre polynomial Pmn of x, that is (1-x2
)m/2
dm |
dxm |
Note that the Condon-Shortley phase term(-1)m
is omitted from this definition.
[edit]Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
- If |x| > 1, a domain error may occur
- If
n
is greater or equal to 128, the behavior is implementation-defined
[edit]Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math as boost::math::legendre_p
, except that the boost.math definition includes the Condon-Shortley phase term.
The first few associated Legendre polynomials are:
Function | Polynomial | ||
---|---|---|---|
assoc_legendre(0, 0, x) | 1 | ||
assoc_legendre(1, 0, x) | x | ||
assoc_legendre(1, 1, x) | (1 - x2 )1/2 | ||
assoc_legendre(2, 0, x) |
- 1) | ||
assoc_legendre(2, 1, x) | 3x(1 - x2 )1/2 | ||
assoc_legendre(2, 2, x) | 3(1 - x2 ) |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::assoc_legendre(int_num1, int_num2, num) has the same effect as std::assoc_legendre(int_num1, int_num2, static_cast<double>(num)).
[edit]Example
#include <cmath>#include <iostream> double P20(double x){return0.5*(3* x * x -1);} double P21(double x){return3.0* x *std::sqrt(1- x * x);} double P22(double x){return3*(1- x * x);} int main(){// spot-checksstd::cout<< std::assoc_legendre(2, 0, 0.5)<<'='<< P20(0.5)<<'\n'<< std::assoc_legendre(2, 1, 0.5)<<'='<< P21(0.5)<<'\n'<< std::assoc_legendre(2, 2, 0.5)<<'='<< P22(0.5)<<'\n';}
Output:
-0.125=-0.125 1.29904=1.29904 2.25=2.25
[edit]See also
(C++17)(C++17)(C++17) | Legendre polynomials (function) |
[edit]External links
Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld — A Wolfram Web Resource. |