Namespaces
Variants
Actions

std::laguerre, std::laguerref, std::laguerrel

From cppreference.com
 
 
 
 
Defined in header <cmath>
(1)
float       laguerre (unsignedint n, float x );

double      laguerre (unsignedint n, double x );

longdouble laguerre (unsignedint n, longdouble x );
(since C++17)
(until C++23)
/* floating-point-type */ laguerre(unsignedint n,
                                    /* floating-point-type */ x );
(since C++23)
float       laguerref(unsignedint n, float x );
(2) (since C++17)
longdouble laguerrel(unsignedint n, longdouble x );
(3) (since C++17)
Defined in header <cmath>
template<class Integer >
double      laguerre (unsignedint n, Integer x );
(A) (since C++17)
1-3) Computes the non-associated Laguerre polynomials of the degree n and argument x. The library provides overloads of std::laguerre for all cv-unqualified floating-point types as the type of the parameter x.(since C++23)
A) Additional overloads are provided for all integer types, which are treated as double.

Contents

[edit]Parameters

n - the degree of the polynomial, an unsigned integer value
x - the argument, a floating-point or integer value

[edit]Return value

If no errors occur, value of the nonassociated Laguerre polynomial of x, that is
ex
n!
dn
dxn
(xn
e-x)
, is returned.

[edit]Error handling

Errors may be reported as specified in math_errhandling

  • If the argument is NaN, NaN is returned and domain error is not reported
  • If x is negative, a domain error may occur
  • If n is greater or equal than 128, the behavior is implementation-defined

[edit]Notes

Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

The Laguerre polynomials are the polynomial solutions of the equation .

The first few are:

Function Polynomial
    laguerre(0, x)     1
laguerre(1, x)-x + 1
laguerre(2, x)
1
2
(x2
- 4x + 2)
laguerre(3, x)     
1
6
(-x3
- 9x2
- 18x + 6)
    

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::laguerre(int_num, num) has the same effect as std::laguerre(int_num, static_cast<double>(num)).

[edit]Example

#include <cmath>#include <iostream>   double L1(double x){return-x +1;}   double L2(double x){return0.5*(x * x -4* x +2);}   int main(){// spot-checksstd::cout<< std::laguerre(1, 0.5)<<'='<< L1(0.5)<<'\n'<< std::laguerre(2, 0.5)<<'='<< L2(0.5)<<'\n'<< std::laguerre(3, 0.0)<<'='<<1.0<<'\n';}

Output:

0.5=0.5 0.125=0.125 1=1

[edit]See also

associated Laguerre polynomials
(function)[edit]

[edit]External links

Weisstein, Eric W. "Laguerre Polynomial." From MathWorld — A Wolfram Web Resource.
close