std::beta, std::betaf, std::betal
Defined in header <cmath> | ||
(1) | ||
float beta (float x, float y ); double beta (double x, double y ); | (since C++17) (until C++23) | |
/* floating-point-type */ beta(/* floating-point-type */ x, /* floating-point-type */ y ); | (since C++23) | |
float betaf(float x, float y ); | (2) | (since C++17) |
longdouble betal(longdouble x, longdouble y ); | (3) | (since C++17) |
Defined in header <cmath> | ||
template<class Arithmetic1, class Arithmetic2 > /* common-floating-point-type */ beta( Arithmetic1 x, Arithmetic2 y ); | (A) | (since C++17) |
std::beta
for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)Contents |
[edit]Parameters
x, y | - | floating-point or integer values |
[edit]Return value
If no errors occur, value of the beta function of x and y, that is ∫10tx-1
(1-t)(y-1)
dt, or, equivalently,
Γ(x)Γ(y) |
Γ(x+y) |
[edit]Error handling
Errors may be reported as specified in math_errhandling.
- If any argument is NaN, NaN is returned and domain error is not reported.
- The function is only required to be defined where both x and y are greater than zero, and is allowed to report a domain error otherwise.
[edit]Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
std::beta(x, y) equals std::beta(y, x).
When x and y are positive integers, std::beta(x, y) equals(x-1)!(y-1)! |
(x+y-1)! |
⎜
⎝n
k⎞
⎟
⎠=
1 |
(n+1)Β(n-k+1,k+1) |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
| (until C++23) |
If num1 and num2 have arithmetic types, then std::beta(num1, num2) has the same effect as std::beta(static_cast</* common-floating-point-type */>(num1), If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. | (since C++23) |
[edit]Example
#include <cassert>#include <cmath>#include <iomanip>#include <iostream>#include <numbers>#include <string> long binom_via_beta(int n, int k){returnstd::lround(1/((n +1)* std::beta(n - k +1, k +1)));} long binom_via_gamma(int n, int k){returnstd::lround(std::tgamma(n +1)/(std::tgamma(n - k +1)*std::tgamma(k +1)));} int main(){std::cout<<"Pascal's triangle:\n";for(int n =1; n <10;++n){std::cout<<std::string(20- n *2, ' ');for(int k =1; k < n;++k){std::cout<<std::setw(3)<< binom_via_beta(n, k)<<' ';assert(binom_via_beta(n, k)== binom_via_gamma(n, k));}std::cout<<'\n';} // A spot-checkconstlongdouble p =0.123;// a random value in [0, 1]constlongdouble q =1- p;constlongdouble π =std::numbers::pi_v<longdouble>;std::cout<<"\n\n"<<std::setprecision(19)<<"β(p,1-p) = "<< std::beta(p, q)<<'\n'<<"π/sin(π*p) = "<< π /std::sin(π * p)<<'\n';}
Output:
Pascal's triangle: 2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9 β(p,1-p) = 8.335989149587307836 π/sin(π*p) = 8.335989149587307834
[edit]See also
(C++11)(C++11)(C++11) | gamma function (function) |
[edit]External links
Weisstein, Eric W. "Beta Function." From MathWorld — A Wolfram Web Resource. |