Namespaces
Variants
Actions

std::student_t_distribution

From cppreference.com
< cpp‎ | numeric‎ | random
 
 
 
 
 
Defined in header <random>
template<class RealType =double>
class student_t_distribution;
(since C++11)

Produces random floating-point values x, distributed according to probability density function:

p(x|n) =
1
·
Γ(
n+1
2
)
Γ(
n
2
)
·

1+
x2
n


-
n+1
2

where n is known as the number of degrees of freedom. This distribution is used when estimating the mean of an unknown normally distributed value given n + 1 independent measurements, each with additive errors of unknown standard deviation, as in physical measurements. Or, alternatively, when estimating the unknown mean of a normal distribution with unknown standard deviation, given n + 1 samples.

std::student_t_distribution satisfies all requirements of RandomNumberDistribution.

Contents

[edit]Template parameters

RealType - The result type generated by the generator. The effect is undefined if this is not one of float, double, or longdouble.

[edit]Member types

Member type Definition
result_type(C++11)RealType
param_type(C++11) the type of the parameter set, see RandomNumberDistribution.

[edit]Member functions

constructs new distribution
(public member function)[edit]
(C++11)
resets the internal state of the distribution
(public member function)[edit]
Generation
(C++11)
generates the next random number in the distribution
(public member function)[edit]
Characteristics
returns the n distribution parameter (degrees of freedom)
(public member function)[edit]
(C++11)
gets or sets the distribution parameter object
(public member function)[edit]
(C++11)
returns the minimum potentially generated value
(public member function)[edit]
(C++11)
returns the maximum potentially generated value
(public member function)[edit]

[edit]Non-member functions

(C++11)(C++11)(removed in C++20)
compares two distribution objects
(function)[edit]
performs stream input and output on pseudo-random number distribution
(function template)[edit]

[edit]Example

#include <algorithm>#include <cmath>#include <iomanip>#include <iostream>#include <map>#include <random>#include <vector>   template<int Height =5, int BarWidth =1, int Padding =1, int Offset =0, class Seq>void draw_vbars(Seq&& s, constbool DrawMinMax =true){ static_assert(0< Height and 0< BarWidth and 0<= Padding and 0<= Offset);   auto cout_n =[](auto&& v, int n =1){while(n-->0)std::cout<< v;};   constauto[min, max]=std::minmax_element(std::cbegin(s), std::cend(s));   std::vector<std::div_t> qr;for(typedef decltype(*std::cbegin(s)) V; V e : s) qr.push_back(std::div(std::lerp(V(0), 8* Height, (e -*min)/(*max -*min)), 8));   for(auto h{Height}; h-->0; cout_n('\n')){ cout_n(' ', Offset);   for(auto dv : qr){constauto q{dv.quot}, r{dv.rem};unsignedchar d[]{0xe2, 0x96, 0x88, 0};// Full Block: '█' q < h ? d[0]=' ', d[1]=0: q == h ? d[2]-=(7- r):0; cout_n(d, BarWidth), cout_n(' ', Padding);}   if(DrawMinMax && Height >1) Height -1== h ?std::cout<<"┬ "<<*max: h ?std::cout<<"│ ":std::cout<<"┴ "<<*min;}}   int main(){std::random_device rd{};std::mt19937 gen{rd()};   std::student_t_distribution<> d{10.0f};   constint norm =10'000; const float cutoff = 0.000'3f;   std::map<int, int> hist{};for(int n =0; n != norm;++n)++hist[std::round(d(gen))];   std::vector<float> bars;std::vector<int> indices;for(constauto&[n, p]: hist)if(float x = p *(1.0f/ norm); cutoff < x){ bars.push_back(x); indices.push_back(n);}   for(draw_vbars<8, 5>(bars);constint n : indices)std::cout<<" "<<std::setw(2)<< n <<" ";std::cout<<'\n';}

Possible output:

 █████ ┬ 0.3753 █████ │ ▁▁▁▁▁ █████ │ █████ █████ ▆▆▆▆▆ │ █████ █████ █████ │ █████ █████ █████ │ ▄▄▄▄▄ █████ █████ █████ ▄▄▄▄▄ │ ▁▁▁▁▁ ▃▃▃▃▃ █████ █████ █████ █████ █████ ▃▃▃▃▃ ▁▁▁▁▁ ▁▁▁▁▁ ┴ 0.0049 -4 -3 -2 -1 0 1 2 3 4 5

[edit]External links

Weisstein, Eric W. "Student's t-Distribution." From MathWorld — A Wolfram Web Resource.
close