Namespaces
Variants
Actions

std::exponential_distribution

From cppreference.com
< cpp‎ | numeric‎ | random
 
 
 
 
 
Defined in header <random>
template<class RealType =double>
class exponential_distribution;
(since C++11)

Produces random non-negative floating-point values x, distributed according to probability density function:

P(x|λ) = λe-λx

The value obtained is the time/distance until the next random event if random events occur at constant rate λ per unit of time/distance. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.

This is the continuous counterpart of std::geometric_distribution.

std::exponential_distribution satisfies RandomNumberDistribution.

Contents

[edit]Template parameters

RealType - The result type generated by the generator. The effect is undefined if this is not one of float, double, or longdouble.

[edit]Member types

Member type Definition
result_type(C++11)RealType
param_type(C++11) the type of the parameter set, see RandomNumberDistribution.

[edit]Member functions

constructs new distribution
(public member function)[edit]
(C++11)
resets the internal state of the distribution
(public member function)[edit]
Generation
(C++11)
generates the next random number in the distribution
(public member function)[edit]
Characteristics
(C++11)
returns the lambda distribution parameter (rate of events)
(public member function)[edit]
(C++11)
gets or sets the distribution parameter object
(public member function)[edit]
(C++11)
returns the minimum potentially generated value
(public member function)[edit]
(C++11)
returns the maximum potentially generated value
(public member function)[edit]

[edit]Non-member functions

(C++11)(C++11)(removed in C++20)
compares two distribution objects
(function)[edit]
performs stream input and output on pseudo-random number distribution
(function template)[edit]

[edit]Notes

Some implementations may occasionally return infinity if RealType is float. This is LWG issue 2524.

[edit]Example

#include <iomanip>#include <iostream>#include <map>#include <random>#include <string>   int main(){std::random_device rd;std::mt19937 gen(rd());   // if particles decay once per second on average,// how much time, in seconds, until the next one? std::exponential_distribution<> d(1);   std::map<int, int> hist;for(int n =0; n !=10000;++n)++hist[2* d(gen)];   for(autoconst&[x, y]: hist)std::cout<<std::fixed<<std::setprecision(1)<< x /2.0<<'-'<<(x +1)/2.0<<' '<<std::string(y /200, '*')<<'\n';}

Possible output:

0.0-0.5 ******************* 0.5-1.0 *********** 1.0-1.5 ******* 1.5-2.0 **** 2.0-2.5 ** 2.5-3.0 * 3.0-3.5 3.5-4.0

[edit]External links

Weisstein, Eric W. "Exponential Distribution." From MathWorld — A Wolfram Web Resource.
close