Namespaces
Variants
Actions

std::poisson_distribution

From cppreference.com
< cpp‎ | numeric‎ | random
 
 
 
 
 
Defined in header <random>
template<class IntType =int>
class poisson_distribution;
(since C++11)

Produces random non-negative integer values i, distributed according to discrete probability function:

P(i|μ) =
e
·μi
i!

The value obtained is the probability of exactly i occurrences of a random event if the expected, mean number of its occurrence under the same conditions (on the same time/space interval) is μ.

std::poisson_distribution satisfies RandomNumberDistribution.

Contents

[edit]Template parameters

IntType - The result type generated by the generator. The effect is undefined if this is not one of short, int, long, longlong, unsignedshort, unsignedint, unsignedlong, or unsignedlonglong.

[edit]Member types

Member type Definition
result_type(C++11)IntType
param_type(C++11) the type of the parameter set, see RandomNumberDistribution.

[edit]Member functions

constructs new distribution
(public member function)[edit]
(C++11)
resets the internal state of the distribution
(public member function)[edit]
Generation
(C++11)
generates the next random number in the distribution
(public member function)[edit]
Characteristics
(C++11)
returns the mean distribution parameter (mean number of occurrences of the event)
(public member function)[edit]
(C++11)
gets or sets the distribution parameter object
(public member function)[edit]
(C++11)
returns the minimum potentially generated value
(public member function)[edit]
(C++11)
returns the maximum potentially generated value
(public member function)[edit]

[edit]Non-member functions

(C++11)(C++11)(removed in C++20)
compares two distribution objects
(function)[edit]
performs stream input and output on pseudo-random number distribution
(function template)[edit]

[edit]Example

#include <iomanip>#include <iostream>#include <map>#include <random>#include <string>   int main(){std::random_device rd;std::mt19937 gen(rd());   // If an event occurs 4 times a minute on average, how// often is it that it occurs n times in one minute? std::poisson_distribution<> d(4);   std::map<int, int> hist;for(int n =0; n !=10000;++n)++hist[d(gen)];   for(auto[x, y]: hist)std::cout<<std::hex<< x <<' '<<std::string(y /100, '*')<<'\n';}

Possible output:

0 * 1 ******* 2 ************** 3 ******************* 4 ******************* 5 *************** 6 ********** 7 ***** 8 ** 9 * a b c d

[edit]External links

Weisstein, Eric W. "Poisson Distribution." From MathWorld — A Wolfram Web Resource.
close