Namespaces
Variants
Actions

std::cauchy_distribution

From cppreference.com
< cpp‎ | numeric‎ | random
 
 
 
 
 
Defined in header <random>
template<class RealType =double>
class cauchy_distribution;
(since C++11)

Produces random numbers according to a Cauchy distribution (also called Lorentz distribution):

f(x; a,b) =



1 +

x - a
b


2




-1

std::cauchy_distribution satisfies all requirements of RandomNumberDistribution.

Contents

[edit]Template parameters

RealType - The result type generated by the generator. The effect is undefined if this is not one of float, double, or longdouble.

[edit]Member types

Member type Definition
result_type(C++11)RealType
param_type(C++11) the type of the parameter set, see RandomNumberDistribution.

[edit]Member functions

constructs new distribution
(public member function)[edit]
(C++11)
resets the internal state of the distribution
(public member function)[edit]
Generation
(C++11)
generates the next random number in the distribution
(public member function)[edit]
Characteristics
(C++11)
returns the distribution parameters
(public member function)[edit]
(C++11)
gets or sets the distribution parameter object
(public member function)[edit]
(C++11)
returns the minimum potentially generated value
(public member function)[edit]
(C++11)
returns the maximum potentially generated value
(public member function)[edit]

[edit]Non-member functions

(C++11)(C++11)(removed in C++20)
compares two distribution objects
(function)[edit]
performs stream input and output on pseudo-random number distribution
(function template)[edit]

[edit]Example

#include <algorithm>#include <cmath>#include <iomanip>#include <iostream>#include <map>#include <random>#include <vector>   template<int Height =5, int BarWidth =1, int Padding =1, int Offset =0, class Seq>void draw_vbars(Seq&& s, constbool DrawMinMax =true){ static_assert(0< Height and 0< BarWidth and 0<= Padding and 0<= Offset);   auto cout_n =[](auto&& v, int n =1){while(n-->0)std::cout<< v;};   constauto[min, max]=std::minmax_element(std::cbegin(s), std::cend(s));   std::vector<std::div_t> qr;for(typedef decltype(*std::cbegin(s)) V; V e : s) qr.push_back(std::div(std::lerp(V(0), 8* Height, (e -*min)/(*max -*min)), 8));   for(auto h{Height}; h-->0; cout_n('\n')){ cout_n(' ', Offset);   for(auto dv : qr){constauto q{dv.quot}, r{dv.rem};unsignedchar d[]{0xe2, 0x96, 0x88, 0};// Full Block: '█' q < h ? d[0]=' ', d[1]=0: q == h ? d[2]-=(7- r):0; cout_n(d, BarWidth), cout_n(' ', Padding);}   if(DrawMinMax && Height >1) Height -1== h ?std::cout<<"┬ "<<*max: h ?std::cout<<"│ ":std::cout<<"┴ "<<*min;}}   int main(){std::random_device rd{};std::mt19937 gen{rd()};   auto cauchy =[&gen](constfloat x0, constfloat 𝛾){ std::cauchy_distribution<float> d{x0 /* a */, 𝛾 /* b */};   constint norm =1'00'00;constfloat cutoff =0.005f;   std::map<int, int> hist{};for(int n =0; n != norm;++n)++hist[std::round(d(gen))];   std::vector<float> bars;std::vector<int> indices;for(autoconst&[n, p]: hist)if(float x = p *(1.0/ norm); cutoff < x){ bars.push_back(x); indices.push_back(n);}   std::cout<<"x₀ = "<< x0 <<", 𝛾 = "<< 𝛾 <<":\n"; draw_vbars<4,3>(bars);for(int n : indices)std::cout<<std::setw(2)<< n <<" ";std::cout<<"\n\n";};   cauchy(/* x₀ = */-2.0f, /* 𝛾 = */0.50f); cauchy(/* x₀ = */+0.0f, /* 𝛾 = */1.25f);}

Possible output:

 x₀ = -2, 𝛾 = 0.5: ███ ┬ 0.5006 ███ │ ▂▂▂ ███ ▁▁▁ │ ▁▁▁ ▁▁▁ ▁▁▁ ▃▃▃ ███ ███ ███ ▂▂▂ ▁▁▁ ▁▁▁ ▁▁▁ ┴ 0.0076 -7 -6 -5 -4 -3 -2 -1 0 1 2 3   x₀ = 0, 𝛾 = 1.25: ███ ┬ 0.2539 ▅▅▅ ███ ▃▃▃ │ ▁▁▁ ███ ███ ███ ▁▁▁ │ ▁▁▁ ▁▁▁ ▁▁▁ ▁▁▁ ▃▃▃ ▅▅▅ ███ ███ ███ ███ ███ ▅▅▅ ▃▃▃ ▂▂▂ ▁▁▁ ▁▁▁ ▁▁▁ ┴ 0.0058 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 9

[edit]External links

Weisstein, Eric W. "Cauchy Distribution." From MathWorld — A Wolfram Web Resource.
close