Minimum Size Subarray Sum in C++
Suppose we have an array of n elements, and a positive integer s. We have to find the minimal length of a contiguous subarray, of which the sum is greater or equal to s. If there isn’t one,then return 0 instead. So if the array is like [2,3,1,2,3,4] and sum is 7, then the output will be 2. This is the subarray [4,3] has the minimum length for this case.
To solve this, we will follow these steps −
ans := 0, n := size of array A, j := 0 and sum := 0
for i in range 0 to n – 1
sum := sum + A[i]
while sum – A[i] >= K and j <= 1
sum := sum – A[j]
increase j by 1
if sum >= k, then
if ans = 0 or ans > (i – j + 1), then ans := (i – j + 1)
return ans
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; class Solution { public: int minSubArrayLen(int K, vector<int>& A) { int ans = 0; int n = A.size(); int j = 0; int sum = 0; for(int i = 0; i < n; i++){ sum += A[i]; while(sum - A[j] >= K && j <= i){ sum -= A[j]; j++; } if(sum >= K){ if(ans == 0 || ans > (i - j + 1)) ans = (i - j + 1); } } return ans; } }; main(){ vector<int> v = {2,3,1,2,4,3}; Solution ob; cout << ((ob.minSubArrayLen(7,v))); }
Input
7 [2,3,1,2,4,3]
Output
2
Advertisements