Maximum Sum Circular Subarray in C++



Suppose we have a circular array C of integers represented by A, we have to find the maximum possible sum of a non-empty subarray of C. Also, a subarray may only include each element of the fixed buffer A at most once. If the array is like [1,-2,3,-2], then the output will be 3. This is because subarray[3] has maximum sum 3.

To solve this, we will follow these steps −

  • n := size of v

  • create arrays leftSum, leftSumMax, rightSum, rightSumMax all of size n

  • leftSum[0] := v[0], leftSumMax[0] := maximum of 0 and v[0]

  • for i in range 1 to n – 1

    • leftSum[i] := leftSum[i - 1] + v[i]

    • leftSumMax[i] := maximum of leftSum[i] and leftSumMax[i - 1]

  • rightSum[n - 1] := v[n - 1], leftSumMax[n - 1] := maximum of 0 and v[n - 1]

  • for i in range n - 2 down to 0

    • rightSum[i] := rightSum [i + 1] + v[i]

    • rightSumMax[i] := maximum of rightSum[i + 1] and rightSum Max[i]

  • leftAns := leftSum[0] + rightSumMax[1]

  • for i in range 1 to n – 2

    • leftAns := maximum of leftAns, leftSum[i] + rightSumMax[i + 1]

  • rightAns := rightSum[n - 1] + leftSumMax[n - 2]

  • for i in range n - 2 down to 1

    • rightAns := maximum of rightAns, rightSum[i] + leftSumMax[i - 1]

  • curr := v[0], kadane := v[0]

  • for i in range 1 to n – 1

    • curr := max of v[1], curr + v[i]

    • kadane := max of curr and kadane

  • return the max of leftAns, rightAns and kadane

Let us see the following implementation to get better understanding −

Example

 Live Demo

#include <bits/stdc++.h> using namespace std; class Solution {    public:    int maxSubarraySumCircular(vector<int>& v) {       int n = v.size();       vector <int> leftSum(n),leftSumMax(n),rightSum(n), rightSumMax(n);       leftSum[0] = v[0];       leftSumMax[0] = max((int)0,v[0]);       for(int i =1;i<n;i++){          leftSum[i] = leftSum[i-1] + v[i];          leftSumMax[i] = max(leftSum[i],leftSumMax[i-1]);       }       rightSum[n-1] = v[n-1];       rightSumMax[n-1] = max((int)0,v[n-1]);       for(int i =n-2;i>=0;i--){          rightSum[i] = rightSum[i+1]+v[i];          rightSumMax[i] = max(rightSumMax[i+1],rightSum[i]);       }       int leftAns=leftSum[0]+rightSumMax[1];       for(int i =1;i<n-1;i++){          leftAns = max(leftAns,leftSum[i]+rightSumMax[i+1]);       }       int rightAns = rightSum[n-1]+leftSumMax[n-2];       for(int i =n-2;i>=1;i--){          rightAns = max(rightAns,rightSum[i]+leftSumMax[i-1]);       }       int curr=v[0];       int kadane = v[0];       for(int i =1;i<n;i++){          curr = max(v[i],curr+v[i]);          kadane = max(curr,kadane);       }       return max(leftAns,max(rightAns,kadane));    } }; main(){    vector<int> v = {1,-2,3,-2};    Solution ob;    cout << (ob.maxSubarraySumCircular(v)); }

Input

[1,-2,3,-2]

Output

3
Updated on: 2020-05-02T10:06:27+05:30

208 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements
close