Namespaces
Variants
Actions

std::beta, std::betaf, std::betal

From cppreference.com
 
 
 
 
Defined in header <cmath>
(1)
float       beta (float x, float y );

double      beta (double x, double y );

longdouble beta (longdouble x, longdouble y );
(since C++17)
(until C++23)
/* floating-point-type */ beta(/* floating-point-type */ x,
                                /* floating-point-type */ y );
(since C++23)
float       betaf(float x, float y );
(2) (since C++17)
longdouble betal(longdouble x, longdouble y );
(3) (since C++17)
Defined in header <cmath>
template<class Arithmetic1, class Arithmetic2 >
/* common-floating-point-type */ beta( Arithmetic1 x, Arithmetic2 y );
(A) (since C++17)
1-3) Computes the Beta function of x and y. The library provides overloads of std::beta for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)
A) Additional overloads are provided for all other combinations of arithmetic types.

Contents

[edit]Parameters

x, y - floating-point or integer values

[edit]Return value

If no errors occur, value of the beta function of x and y, that is 1
0
tx-1
(1-t)(y-1)
dt
, or, equivalently,
Γ(x)Γ(y)
Γ(x+y)
is returned.

[edit]Error handling

Errors may be reported as specified in math_errhandling.

  • If any argument is NaN, NaN is returned and domain error is not reported.
  • The function is only required to be defined where both x and y are greater than zero, and is allowed to report a domain error otherwise.

[edit]Notes

Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

std::beta(x, y) equals std::beta(y, x).

When x and y are positive integers, std::beta(x, y) equals
(x-1)!(y-1)!
(x+y-1)!
. Binomial coefficients can be expressed in terms of the beta function:

n
k


=
1
(n+1)Β(n-k+1,k+1)
.

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:

  • If num1 or num2 has type longdouble, then std::beta(num1, num2) has the same effect as std::beta(static_cast<longdouble>(num1),
              static_cast<longdouble>(num2))
    .
  • Otherwise, if num1 and/or num2 has type double or an integer type, then std::beta(num1, num2) has the same effect as std::beta(static_cast<double>(num1),
              static_cast<double>(num2))
    .
  • Otherwise, if num1 or num2 has type float, then std::beta(num1, num2) has the same effect as std::beta(static_cast<float>(num1),
              static_cast<float>(num2))
    .
(until C++23)

If num1 and num2 have arithmetic types, then std::beta(num1, num2) has the same effect as std::beta(static_cast</* common-floating-point-type */>(num1),
          static_cast</* common-floating-point-type */>(num2))
, where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank between the types of num1 and num2, arguments of integer type are considered to have the same floating-point conversion rank as double.

If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.

(since C++23)

[edit]Example

#include <cassert>#include <cmath>#include <iomanip>#include <iostream>#include <numbers>#include <string>   long binom_via_beta(int n, int k){returnstd::lround(1/((n +1)* std::beta(n - k +1, k +1)));}   long binom_via_gamma(int n, int k){returnstd::lround(std::tgamma(n +1)/(std::tgamma(n - k +1)*std::tgamma(k +1)));}   int main(){std::cout<<"Pascal's triangle:\n";for(int n =1; n <10;++n){std::cout<<std::string(20- n *2, ' ');for(int k =1; k < n;++k){std::cout<<std::setw(3)<< binom_via_beta(n, k)<<' ';assert(binom_via_beta(n, k)== binom_via_gamma(n, k));}std::cout<<'\n';}   // A spot-checkconstlongdouble p =0.123;// a random value in [0, 1]constlongdouble q =1- p;constlongdouble π =std::numbers::pi_v<longdouble>;std::cout<<"\n\n"<<std::setprecision(19)<<"β(p,1-p) = "<< std::beta(p, q)<<'\n'<<"π/sin(π*p) = "<< π /std::sin(π * p)<<'\n';}

Output:

Pascal's triangle:   2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9   β(p,1-p) = 8.335989149587307836 π/sin(π*p) = 8.335989149587307834

[edit]See also

(C++11)(C++11)(C++11)
gamma function
(function)[edit]

[edit]External links

Weisstein, Eric W. "Beta Function." From MathWorld — A Wolfram Web Resource.
close