Namespaces
Variants
Actions

std::exp, std::expf, std::expl

From cppreference.com
< cpp‎ | numeric‎ | math
 
 
 
 
Defined in header <cmath>
(1)
float       exp (float num );

double      exp (double num );

longdouble exp (longdouble num );
(until C++23)
/*floating-point-type*/
            exp (/*floating-point-type*/ num );
(since C++23)
(constexpr since C++26)
float       expf(float num );
(2)(since C++11)
(constexpr since C++26)
longdouble expl(longdouble num );
(3)(since C++11)
(constexpr since C++26)
SIMD overload(since C++26)
Defined in header <simd>
template</*math-floating-point*/ V >

constexpr/*deduced-simd-t*/<V>

            exp (const V& v_num );
(S) (since C++26)
Defined in header <cmath>
template<class Integer >
double      exp ( Integer num );
(A)(constexpr since C++26)
1-3) Computes e (Euler's number, 2.7182818...) raised to the given power num. The library provides overloads of std::exp for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
S) The SIMD overload performs an element-wise std::exp on v_num.
(See math-floating-point and deduced-simd-t for their definitions.)
(since C++26)
A) Additional overloads are provided for all integer types, which are treated as double.
(since C++11)

Contents

[edit]Parameters

num - floating-point or integer value

[edit]Return value

If no errors occur, the base-e exponential of num (enum
) is returned.

If a range error occurs due to overflow, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.

If a range error occurs due to underflow, the correct result (after rounding) is returned.

[edit]Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is ±0, 1 is returned.
  • If the argument is -∞, +0 is returned.
  • If the argument is +∞, +∞ is returned.
  • If the argument is NaN, NaN is returned.

[edit]Notes

For IEEE-compatible type double, overflow is guaranteed if 709.8 < num, and underflow is guaranteed if num < -708.4.

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::exp(num) has the same effect as std::exp(static_cast<double>(num)).

[edit]Example

#include <cerrno>#include <cfenv>#include <cmath>#include <cstring>#include <iomanip>#include <iostream>#include <numbers>   // #pragma STDC FENV_ACCESS ON   consteval double approx_e(){longdouble e{1.0};for(auto fac{1ull}, n{1llu}; n !=18;++n, fac *= n) e +=1.0/ fac;return e;}   int main(){std::cout<<std::setprecision(16)<<"exp(1) = e¹ = "<< std::exp(1)<<'\n'<<"numbers::e = "<<std::numbers::e<<'\n'<<"approx_e = "<< approx_e()<<'\n'<<"FV of $100, continuously compounded at 3% for 1 year = "<<std::setprecision(6)<<100* std::exp(0.03)<<'\n';   // special valuesstd::cout<<"exp(-0) = "<< std::exp(-0.0)<<'\n'<<"exp(-Inf) = "<< std::exp(-INFINITY)<<'\n';   // error handling errno=0;std::feclearexcept(FE_ALL_EXCEPT);   std::cout<<"exp(710) = "<< std::exp(710)<<'\n';   if(errno==ERANGE)std::cout<<" errno == ERANGE: "<<std::strerror(errno)<<'\n';if(std::fetestexcept(FE_OVERFLOW))std::cout<<" FE_OVERFLOW raised\n";}

Possible output:

exp(1) = e¹ = 2.718281828459045 numbers::e = 2.718281828459045 approx_e = 2.718281828459045 FV of $100, continuously compounded at 3% for 1 year = 103.045 exp(-0) = 1 exp(-Inf) = 0 exp(710) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised

[edit]See also

(C++11)(C++11)(C++11)
returns 2 raised to the given power (2x)
(function)[edit]
(C++11)(C++11)(C++11)
returns e raised to the given power, minus 1 (ex-1)
(function)[edit]
(C++11)(C++11)
computes natural (base e) logarithm (ln(x))
(function)[edit]
complex base e exponential
(function template)[edit]
applies the function std::exp to each element of valarray
(function template)[edit]
close