Namespaces
Variants
Actions

std::bidirectional_iterator

From cppreference.com
< cpp‎ | iterator
 
 
Iterator library
Iterator concepts
bidirectional_iterator
(C++20)


Iterator primitives
Algorithm concepts and utilities
Indirect callable concepts
Common algorithm requirements
(C++20)
(C++20)
(C++20)
Utilities
(C++20)
Iterator adaptors
Range access
(C++11)(C++14)
(C++14)(C++14)  
(C++11)(C++14)
(C++14)(C++14)  
(C++17)(C++20)
(C++17)
(C++17)
 
Defined in header <iterator>
template<class I >

    concept bidirectional_iterator =
        std::forward_iterator<I>&&
        std::derived_from</*ITER_CONCEPT*/<I>, std::bidirectional_iterator_tag>&&
        requires(I i){
            {--i }->std::same_as<I&>;
            { i--}->std::same_as<I>;

        };
(since C++20)

The concept bidirectional_iterator refines forward_iterator by adding the ability to move an iterator backward.

Contents

[edit]Iterator concept determination

Definition of this concept is specified via an exposition-only alias template /*ITER_CONCEPT*/.

In order to determine /*ITER_CONCEPT*/<I>, let ITER_TRAITS<I> denote I if the specialization std::iterator_traits<I> is generated from the primary template, or std::iterator_traits<I> otherwise:

  • If ITER_TRAITS<I>::iterator_concept is valid and names a type, /*ITER_CONCEPT*/<I> denotes the type.
  • Otherwise, if ITER_TRAITS<I>::iterator_category is valid and names a type, /*ITER_CONCEPT*/<I> denotes the type.
  • Otherwise, if std::iterator_traits<I> is generated from the primary template, /*ITER_CONCEPT*/<I> denotes std::random_access_iterator_tag.
    (That is, std::derived_from</*ITER_CONCEPT*/<I>, std::bidirectional_iterator_tag> is assumed to be true.)
  • Otherwise, /*ITER_CONCEPT*/<I> does not denote a type and results in a substitution failure.

[edit]Semantic requirements

A bidirectional iterator r is said to be decrementable if and only if there exists some s such that ++s == r.

std::bidirectional_iterator<I> is modeled only if all the concepts it subsumes are modeled, and given two objects a and b of type I:

  • If a is decrementable, a is in the domain of the expressions --a and a--.
  • Pre-decrement yields an lvalue that refers to the operand: std::addressof(--a)==std::addressof(a).
  • Post-decrement yields the previous value of the operand: if bool(a == b), then bool(a--== b).
  • Post-decrement and pre-decrement perform the same modification on its operand: If bool(a == b), then after evaluating both a-- and --b, bool(a == b) still holds.
  • Increment and decrement are inverses of each other:
  • If a is incrementable and bool(a == b), then bool(--(++a)== b).
  • If a is decrementable and bool(a == b), then bool(++(--a)== b).

[edit]Equality preservation

Expressions declared in requires expressions of the standard library concepts are required to be equality-preserving (except where stated otherwise).

[edit]Notes

Unlike the LegacyBidirectionalIterator requirements, the bidirectional_iterator concept does not require dereference to return an lvalue.

[edit]Example

A minimum bidirectional iterator.

#include <cstddef>#include <iterator>   struct SimpleBidiIterator {using difference_type =std::ptrdiff_t;using value_type =int;   int operator*()const;   SimpleBidiIterator& operator++();   SimpleBidiIterator operator++(int){auto tmp =*this;++*this;return tmp;}   SimpleBidiIterator& operator--();   SimpleBidiIterator operator--(int){auto tmp =*this;--*this;return tmp;}   bool operator==(const SimpleBidiIterator&)const;};   static_assert(std::bidirectional_iterator<SimpleBidiIterator>);

[edit]See also

specifies that an input_iterator is a forward iterator, supporting equality comparison and multi-pass
(concept)[edit]
specifies that a bidirectional_iterator is a random-access iterator, supporting advancement in constant time and subscripting
(concept)[edit]
close