Namespaces
Variants
Actions

Standard library header <random> (C++11)

From cppreference.com
< cpp‎ | header
 
 
Standard library headers
 

This header is part of the pseudo-random number generation library.

Contents

Includes

std::initializer_list class template[edit]

Concepts

Uniform random bit generator requirements
specifies that a type qualifies as a uniform random bit generator
(concept)[edit]

Classes

Random number engines
implements linear congruential algorithm
(class template)[edit]
implements Mersenne twister algorithm
(class template)[edit]
implements a subtract-with-carry (lagged Fibonacci) algorithm
(class template)[edit]
a counter-based parallelizable generator
(class template)[edit]
Random number engine adaptors
discards some output of a random number engine
(class template)[edit]
packs the output of a random number engine into blocks of a specified number of bits
(class template)[edit]
delivers the output of a random number engine in a different order
(class template)[edit]
Predefined generators
minstd_rand0(C++11)std::linear_congruential_engine<std::uint_fast32_t,
                                16807, 0, 2147483647>

Discovered in 1969 by Lewis, Goodman and Miller, adopted as "Minimal standard" in 1988 by Park and Miller[edit]

minstd_rand(C++11)

std::linear_congruential_engine<std::uint_fast32_t,
                                48271, 0, 2147483647>
Newer "Minimum standard", recommended by Park, Miller, and Stockmeyer in 1993[edit]

mt19937(C++11)

std::mersenne_twister_engine<std::uint_fast32_t,
                             32, 624, 397, 31,
                             0x9908b0df, 11,
                             0xffffffff, 7,
                             0x9d2c5680, 15,
                             0xefc60000, 18, 1812433253>
32-bit Mersenne Twister by Matsumoto and Nishimura, 1998[edit]

mt19937_64(C++11)

std::mersenne_twister_engine<std::uint_fast64_t,
                             64, 312, 156, 31,
                             0xb5026f5aa96619e9, 29,
                             0x5555555555555555, 17,
                             0x71d67fffeda60000, 37,
                             0xfff7eee000000000, 43,
                             6364136223846793005>
64-bit Mersenne Twister by Matsumoto and Nishimura, 2000[edit]

ranlux24_base(C++11)std::subtract_with_carry_engine<std::uint_fast32_t, 24, 10, 24>[edit]
ranlux48_base(C++11)std::subtract_with_carry_engine<std::uint_fast64_t, 48, 5, 12>[edit]
ranlux24(C++11)std::discard_block_engine<std::ranlux24_base, 223, 23>

24-bit RANLUX generator by Martin Lüscher and Fred James, 1994[edit]

ranlux48(C++11)std::discard_block_engine<std::ranlux48_base, 389, 11>

48-bit RANLUX generator by Martin Lüscher and Fred James, 1994[edit]

knuth_b(C++11)std::shuffle_order_engine<std::minstd_rand0, 256>[edit]
philox4x32(C++26)std::philox_engine<std::uint_fast32_t, 32, 4, 10,
                   0xCD9E8D57, 0x9E3779B9,
                   0xD2511F53, 0xBB67AE85>[edit]
philox4x64(C++26)std::philox_engine<std::uint_fast64_t, 64, 4, 10,
                   0xCA5A826395121157, 0x9E3779B97F4A7C15,
                   0xD2E7470EE14C6C93, 0xBB67AE8584CAA73B>[edit]
default_random_engine(C++11) an implementation-defined RandomNumberEngine type
Non-deterministic random numbers
non-deterministic random number generator using hardware entropy source
(class)[edit]
Uniform distributions
produces integer values evenly distributed across a range
(class template)[edit]
produces real values evenly distributed across a range
(class template)[edit]
Bernoulli distributions
produces bool values on a Bernoulli distribution
(class)[edit]
produces integer values on a binomial distribution
(class template)[edit]
produces integer values on a negative binomial distribution
(class template)[edit]
produces integer values on a geometric distribution
(class template)[edit]
Poisson distributions
produces integer values on a Poisson distribution
(class template)[edit]
produces real values on an exponential distribution
(class template)[edit]
produces real values on a gamma distribution
(class template)[edit]
produces real values on a Weibull distribution
(class template)[edit]
produces real values on an extreme value distribution
(class template)[edit]
Normal distributions
produces real values on a standard normal (Gaussian) distribution
(class template)[edit]
produces real values on a lognormal distribution
(class template)[edit]
produces real values on a chi-squared distribution
(class template)[edit]
produces real values on a Cauchy distribution
(class template)[edit]
produces real values on a Fisher's F-distribution
(class template)[edit]
produces real values on a Student's t-distribution
(class template)[edit]
Sampling distributions
produces integer values on a discrete distribution
(class template)[edit]
produces real values distributed on constant subintervals
(class template)[edit]
produces real values distributed on defined subintervals
(class template)[edit]
Utilities
(C++11)
general-purpose bias-eliminating scrambled seed sequence generator
(class)[edit]

Functions

evenly distributes real values of given precision across [01)
(function template)[edit]
fills a range with random numbers from a uniform random bit generator
(algorithm function object)[edit]

[edit]Synopsis

#include <initializer_list>   namespace std {// uniform random bit generator requirementstemplate<class G> concept uniform_random_bit_generator =/* see description */;// freestanding   // class template linear_congruential_enginetemplate<class UIntType, UIntType a, UIntType c, UIntType m>class linear_congruential_engine;// partially freestanding   // class template mersenne_twister_enginetemplate<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f>class mersenne_twister_engine;// partially freestanding   // class template subtract_with_carry_enginetemplate<class UIntType, size_t w, size_t s, size_t r>class subtract_with_carry_engine;// partially freestanding   // class template discard_block_enginetemplate<class Engine, size_t p, size_t r>class discard_block_engine;// partially freestanding   // class template independent_bits_enginetemplate<class Engine, size_t w, class UIntType>class independent_bits_engine;// partially freestanding   // class template shuffle_order_enginetemplate<class Engine, size_t k>class shuffle_order_engine;   // class template philox_enginetemplate<class UIntType, size_t w, size_t n, size_t r, UIntType... consts>class philox_engine;// partially freestanding   // engines and engine adaptors with predefined parametersusing minstd_rand0 =/* see description */;// freestandingusing minstd_rand =/* see description */;// freestandingusing mt19937 =/* see description */;// freestandingusing mt19937_64 =/* see description */;// freestandingusing ranlux24_base =/* see description */;// freestandingusing ranlux48_base =/* see description */;// freestandingusing ranlux24 =/* see description */;// freestandingusing ranlux48 =/* see description */;// freestandingusing knuth_b =/* see description */;using philox4x32 =/* see description */;// freestandingusing philox4x64 =/* see description */;// freestanding   using default_random_engine =/* see description */;   // class random_deviceclass random_device;   // class seed_seqclass seed_seq;   // function template generate_canonicaltemplate<class RealType, size_t digits, class URBG> RealType generate_canonical(URBG& g);   namespace ranges {// generate_randomtemplate<class R, class G> requires output_range<R, invoke_result_t<G&>>&& uniform_random_bit_generator<remove_cvref_t<G>>constexpr borrowed_iterator_t<R> generate_random(R&& r, G&& g);   template<class G, output_iterator<invoke_result_t<G&>> O, sentinel_for<O> S> requires uniform_random_bit_generator<remove_cvref_t<G>>constexpr O generate_random(O first, S last, G&& g);   template<class R, class G, class D> requires output_range<R, invoke_result_t<D&, G&>>&& invocable<D&, G&>&& uniform_random_bit_generator<remove_cvref_t<G>>&& is_arithmetic_v<invoke_result_t<D&, G&>>constexpr borrowed_iterator_t<R> generate_random(R&& r, G&& g, D&& d);   template<class G, class D, output_iterator<invoke_result_t<D&, G&>> O, sentinel_for<O> S> requires invocable<D&, G&>&& uniform_random_bit_generator<remove_cvref_t<G>>&& is_arithmetic_v<invoke_result_t<D&, G&>>constexpr O generate_random(O first, S last, G&& g, D&& d);}   // class template uniform_int_distributiontemplate<class IntType =int>class uniform_int_distribution;// partially freestanding   // class template uniform_real_distributiontemplate<class RealType =double>class uniform_real_distribution;   // class bernoulli_distributionclass bernoulli_distribution;   // class template binomial_distributiontemplate<class IntType =int>class binomial_distribution;   // class template geometric_distributiontemplate<class IntType =int>class geometric_distribution;   // class template negative_binomial_distributiontemplate<class IntType =int>class negative_binomial_distribution;   // class template poisson_distributiontemplate<class IntType =int>class poisson_distribution;   // class template exponential_distributiontemplate<class RealType =double>class exponential_distribution;   // class template gamma_distributiontemplate<class RealType =double>class gamma_distribution;   // class template weibull_distributiontemplate<class RealType =double>class weibull_distribution;   // class template extreme_value_distributiontemplate<class RealType =double>class extreme_value_distribution;   // class template normal_distributiontemplate<class RealType =double>class normal_distribution;   // class template lognormal_distributiontemplate<class RealType =double>class lognormal_distribution;   // class template chi_squared_distributiontemplate<class RealType =double>class chi_squared_distribution;   // class template cauchy_distributiontemplate<class RealType =double>class cauchy_distribution;   // class template fisher_f_distributiontemplate<class RealType =double>class fisher_f_distribution;   // class template student_t_distributiontemplate<class RealType =double>class student_t_distribution;   // class template discrete_distributiontemplate<class IntType =int>class discrete_distribution;   // class template piecewise_constant_distributiontemplate<class RealType =double>class piecewise_constant_distribution;   // class template piecewise_linear_distributiontemplate<class RealType =double>class piecewise_linear_distribution;}

[edit]Concept uniform_random_bit_generator

namespace std {template<class G> concept uniform_random_bit_generator = invocable<G&>&& unsigned_integral<invoke_result_t<G&>>&& requires {{ G::min()}-> same_as<invoke_result_t<G&>>;{ G::max()}-> same_as<invoke_result_t<G&>>; requires bool_constant<(G::min()< G::max())>::value;};}

[edit]Class template std::linear_congruential_engine

namespace std {template<class UIntType, UIntType a, UIntType c, UIntType m>class linear_congruential_engine {public:// typesusing result_type = UIntType;   // engine characteristicsstaticconstexpr result_type multiplier = a;staticconstexpr result_type increment = c;staticconstexpr result_type modulus = m;staticconstexpr result_type min(){return c == 0u ? 1u : 0u;}staticconstexpr result_type max(){return m - 1u;}staticconstexpr result_type default_seed = 1u;   // constructors and seeding functions linear_congruential_engine(): linear_congruential_engine(default_seed){}explicit linear_congruential_engine(result_type s);template<class Sseq>explicit linear_congruential_engine(Sseq& q);void seed(result_type s = default_seed);template<class Sseq>void seed(Sseq& q);   // equality operatorsfriendbool operator==(const linear_congruential_engine& x, const linear_congruential_engine& y);   // generating functions result_type operator()();void discard(unsignedlonglong z);   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, // hostedconst linear_congruential_engine& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, // hosted linear_congruential_engine& x);};}

[edit]Class template std::mersenne_twister_engine

namespace std {template<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f>class mersenne_twister_engine {public:// typesusing result_type = UIntType;   // engine characteristicsstaticconstexpr size_t word_size = w;staticconstexpr size_t state_size = n;staticconstexpr size_t shift_size = m;staticconstexpr size_t mask_bits = r;staticconstexpr UIntType xor_mask = a;staticconstexpr size_t tempering_u = u;staticconstexpr UIntType tempering_d = d;staticconstexpr size_t tempering_s = s;staticconstexpr UIntType tempering_b = b;staticconstexpr size_t tempering_t = t;staticconstexpr UIntType tempering_c = c;staticconstexpr size_t tempering_l = l;staticconstexpr UIntType initialization_multiplier = f;staticconstexpr result_type min(){return0;}staticconstexpr result_type max(){return/*2^w - 1*/;}staticconstexpr result_type default_seed = 5489u;   // constructors and seeding functions mersenne_twister_engine(): mersenne_twister_engine(default_seed){}explicit mersenne_twister_engine(result_type value);template<class Sseq>explicit mersenne_twister_engine(Sseq& q);void seed(result_type value = default_seed);template<class Sseq>void seed(Sseq& q);   // equality operatorsfriendbool operator==(const mersenne_twister_engine& x, const mersenne_twister_engine& y);   // generating functions result_type operator()();void discard(unsignedlonglong z);   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, // hostedconst mersenne_twister_engine& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, // hosted mersenne_twister_engine& x);};}

[edit]Class template std::subtract_with_carry_engine

namespace std {template<class UIntType, size_t w, size_t s, size_t r>class subtract_with_carry_engine {public:// typesusing result_type = UIntType;   // engine characteristicsstaticconstexpr size_t word_size = w;staticconstexpr size_t short_lag = s;staticconstexpr size_t long_lag = r;staticconstexpr result_type min(){return0;}staticconstexpr result_type max(){return/*m - 1*/;}staticconstexpr uint_least32_t default_seed = 19780503u;   // constructors and seeding functions subtract_with_carry_engine(): subtract_with_carry_engine(0u){}explicit subtract_with_carry_engine(result_type value);template<class Sseq>explicit subtract_with_carry_engine(Sseq& q);void seed(result_type value = 0u);template<class Sseq>void seed(Sseq& q);   // equality operatorsfriendbool operator==(const subtract_with_carry_engine& x, const subtract_with_carry_engine& y);   // generating functions result_type operator()();void discard(unsignedlonglong z);   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, // hostedconst subtract_with_carry_engine& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, // hosted subtract_with_carry_engine& x);};}

[edit]Class template std::philox_engine

namespace std {template<class UIntType, size_t w, size_t n, size_t r, UIntType... consts>class philox_engine {staticconstexpr size_t /*array-size*/= n /2;// exposition onlypublic:// typesusing result_type = UIntType;   // engine characteristicsstaticconstexpr size_t word_size = w;staticconstexpr size_t word_count = n;staticconstexpr size_t round_count = r;staticconstexpr array<result_type, /*array-size*/> multipliers;staticconstexpr array < result_type, @exposition onlyid { array - size >} @round_consts;staticconstexpr result_type min(){return0;}staticconstexpr result_type max(){return m -1;}staticconstexpr result_type default_seed = 20111115u;   // constructors and seeding functions philox_engine(): philox_engine(default_seed){}explicit philox_engine(result_type value);template<class Sseq>explicit philox_engine(Sseq& q);void seed(result_type value = default_seed);template<class Sseq>void seed(Sseq& q);   void set_counter(const array<result_type, n>& counter);   // equality operatorsfriendbool operator==(const philox_engine& x, const philox_engine& y);   // generating functions result_type operator()();void discard(unsignedlonglong z);   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, // hostedconst philox_engine& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, // hosted philox_engine& x);};}

[edit]Class template std::discard_block_engine

namespace std {template<class Engine, size_t p, size_t r>class discard_block_engine {public:// typesusing result_type =typename Engine::result_type;   // engine characteristicsstaticconstexpr size_t block_size = p;staticconstexpr size_t used_block = r;staticconstexpr result_type min(){return Engine::min();}staticconstexpr result_type max(){return Engine::max();}   // constructors and seeding functions discard_block_engine();explicit discard_block_engine(const Engine& e);explicit discard_block_engine(Engine&& e);explicit discard_block_engine(result_type s);template<class Sseq>explicit discard_block_engine(Sseq& q);void seed();void seed(result_type s);template<class Sseq>void seed(Sseq& q);   // equality operatorsfriendbool operator==(const discard_block_engine& x, const discard_block_engine& y);   // generating functions result_type operator()();void discard(unsignedlonglong z);   // property functionsconst Engine& base()constnoexcept{return e;}   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, // hostedconst discard_block_engine& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, // hosted discard_block_engine& x);   private: Engine e;// exposition only size_t n;// exposition only};}

[edit]Class template std::independent_bits_engine

namespace std {template<class Engine, size_t w, class UIntType>class independent_bits_engine {public:// typesusing result_type = UIntType;   // engine characteristicsstaticconstexpr result_type min(){return0;}staticconstexpr result_type max(){return/*2^w - 1*/;}   // constructors and seeding functions independent_bits_engine();explicit independent_bits_engine(const Engine& e);explicit independent_bits_engine(Engine&& e);explicit independent_bits_engine(result_type s);template<class Sseq>explicit independent_bits_engine(Sseq& q);void seed();void seed(result_type s);template<class Sseq>void seed(Sseq& q);   // equality operatorsfriendbool operator==(const independent_bits_engine& x, const independent_bits_engine& y);   // generating functions result_type operator()();void discard(unsignedlonglong z);   // property functionsconst Engine& base()constnoexcept{return e;}   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, // hostedconst independent_bits_engine& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, // hosted independent_bits_engine& x);   private: Engine e;// exposition only};}

[edit]Class template std::shuffle_order_engine

namespace std {template<class Engine, size_t k>class shuffle_order_engine {public:// typesusing result_type =typename Engine::result_type;   // engine characteristicsstaticconstexpr size_t table_size = k;staticconstexpr result_type min(){return Engine::min();}staticconstexpr result_type max(){return Engine::max();}   // constructors and seeding functions shuffle_order_engine();explicit shuffle_order_engine(const Engine& e);explicit shuffle_order_engine(Engine&& e);explicit shuffle_order_engine(result_type s);template<class Sseq>explicit shuffle_order_engine(Sseq& q);void seed();void seed(result_type s);template<class Sseq>void seed(Sseq& q);   // equality operatorsfriendbool operator==(const shuffle_order_engine& x, const shuffle_order_engine& y);   // generating functions result_type operator()();void discard(unsignedlonglong z);   // property functionsconst Engine& base()constnoexcept{return e;}   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const shuffle_order_engine& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, shuffle_order_engine& x);   private: Engine e;// exposition only result_type V[k];// exposition only result_type Y;// exposition only};}

[edit]Engines and engine adaptors with predefined parameters

namespace std {using minstd_rand0 = linear_congruential_engine<uint_fast32_t, 16'807, 0, 2'147'483'647>;using minstd_rand = linear_congruential_engine<uint_fast32_t, 48'271, 0, 2'147'483'647>;using mt19937 = mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31, 0x9908'b0df, 11, 0xffff'ffff, 7, 0x9d2c'5680, 15, 0xefc6'0000, 18, 1'812'433'253>; //'using mt19937_64 = mersenne_twister_engine<uint_fast64_t, 64, 312, 156, 31, 0xb502'6f5a'a966'19e9, 29, 0x5555'5555'5555'5555, 17, 0x71d6'7fff'eda6'0000, 37, 0xfff7'eee0'0000'0000, 43, 6'364'136'223'846'793'005>;using ranlux24_base = subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>;using ranlux48_base = subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>;using ranlux24 = discard_block_engine<ranlux24_base, 223, 23>;using ranlux48 = discard_block_engine<ranlux48_base, 389, 11>;using knuth_b = shuffle_order_engine<minstd_rand0, 256>;using default_random_engine =/* implementation-defined */;using philox4x32 = philox_engine<uint_fast32_t, 32, 4, 10, 0xD2511F53, 0x9E3779B9, 0xCD9E8D57, 0xBB67AE85>;using philox4x64 = philox_engine<uint_fast64_t, 64, 4, 10, 0xD2E7470EE14C6C93, 0x9E3779B97F4A7C15, 0xCA5A826395121157, 0xBB67AE8584CAA73B>;}

[edit]Class std::random_device

namespace std {class random_device {public:// typesusing result_type =unsignedint;   // generator characteristicsstaticconstexpr result_type min(){return numeric_limits<result_type>::min();}staticconstexpr result_type max(){return numeric_limits<result_type>::max();}   // constructors random_device(): random_device(/* implementation-defined */){}explicit random_device(const string& token);   // generating functions result_type operator()();   // property functionsdouble entropy()constnoexcept;   // no copy functions random_device(const random_device&)= delete;void operator=(const random_device&)= delete;};}

[edit]Class std::seed_seq

namespace std {class seed_seq {public:// typesusing result_type = uint_least32_t;   // constructors seed_seq()noexcept;template<class T> seed_seq(initializer_list<T> il);template<class InputIter> seed_seq(InputIter begin, InputIter end);   // generating functionstemplate<class RandomAccessIter>void generate(RandomAccessIter begin, RandomAccessIter end);   // property functions size_t size()constnoexcept;template<class OutputIter>void param(OutputIter dest)const;   // no copy functions seed_seq(const seed_seq&)= delete;void operator=(const seed_seq&)= delete;   private: vector<result_type> v;// exposition only};}

[edit]Class template std::uniform_int_distribution

namespace std {template<class IntType =int>class uniform_int_distribution {public:// typesusing result_type = IntType;using param_type =/* unspecified */;   // constructors and reset functions uniform_int_distribution(): uniform_int_distribution(0){}explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());explicit uniform_int_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const uniform_int_distribution& x, const uniform_int_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions result_type a()const; result_type b()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, // hostedconst uniform_int_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, // hosted uniform_int_distribution& x);};}

[edit]Class template std::uniform_real_distribution

namespace std {template<class RealType =double>class uniform_real_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructors and reset functions uniform_real_distribution(): uniform_real_distribution(0.0){}explicit uniform_real_distribution(RealType a, RealType b =1.0);explicit uniform_real_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const uniform_real_distribution& x, const uniform_real_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions result_type a()const; result_type b()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const uniform_real_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, uniform_real_distribution& x);};}

[edit]Class std::bernoulli_distribution

namespace std {class bernoulli_distribution {public:// typesusing result_type =bool;using param_type =/* unspecified */;   // constructors and reset functions bernoulli_distribution(): bernoulli_distribution(0.5){}explicit bernoulli_distribution(double p);explicit bernoulli_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const bernoulli_distribution& x, const bernoulli_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functionsdouble p()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const bernoulli_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, bernoulli_distribution& x);};}

[edit]Class template std::binomial_distribution

namespace std {template<class IntType =int>class binomial_distribution {public:// typesusing result_type = IntType;using param_type =/* unspecified */;   // constructors and reset functions binomial_distribution(): binomial_distribution(1){}explicit binomial_distribution(IntType t, double p =0.5);explicit binomial_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const binomial_distribution& x, const binomial_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions IntType t()const;double p()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const binomial_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, binomial_distribution& x);};}

[edit]Class template std::geometric_distribution

namespace std {template<class IntType =int>class geometric_distribution {public:// typesusing result_type = IntType;using param_type =/* unspecified */;   // constructors and reset functions geometric_distribution(): geometric_distribution(0.5){}explicit geometric_distribution(double p);explicit geometric_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const geometric_distribution& x, const geometric_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functionsdouble p()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const geometric_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, geometric_distribution& x);};}

[edit]Class template std::negative_binomial_distribution

namespace std {template<class IntType =int>class negative_binomial_distribution {public:// typesusing result_type = IntType;using param_type =/* unspecified */;   // constructor and reset functions negative_binomial_distribution(): negative_binomial_distribution(1){}explicit negative_binomial_distribution(IntType k, double p =0.5);explicit negative_binomial_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const negative_binomial_distribution& x, const negative_binomial_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions IntType k()const;double p()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const negative_binomial_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, negative_binomial_distribution& x);};}

[edit]Class template std::poisson_distribution

namespace std {template<class IntType =int>class poisson_distribution {public:// typesusing result_type = IntType;using param_type =/* unspecified */;   // constructors and reset functions poisson_distribution(): poisson_distribution(1.0){}explicit poisson_distribution(double mean);explicit poisson_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const poisson_distribution& x, const poisson_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functionsdouble mean()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const poisson_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, poisson_distribution& x);};}

[edit]Class template std::exponential_distribution

namespace std {template<class RealType =double>class exponential_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructors and reset functions exponential_distribution(): exponential_distribution(1.0){}explicit exponential_distribution(RealType lambda);explicit exponential_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const exponential_distribution& x, const exponential_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType lambda()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const exponential_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, exponential_distribution& x);};}

[edit]Class template std::gamma_distribution

namespace std {template<class RealType =double>class gamma_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructors and reset functions gamma_distribution(): gamma_distribution(1.0){}explicit gamma_distribution(RealType alpha, RealType beta =1.0);explicit gamma_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const gamma_distribution& x, const gamma_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType alpha()const; RealType beta()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const gamma_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, gamma_distribution& x);};}

[edit]Class template std::weibull_distribution

namespace std {template<class RealType =double>class weibull_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions weibull_distribution(): weibull_distribution(1.0){}explicit weibull_distribution(RealType a, RealType b =1.0);explicit weibull_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const weibull_distribution& x, const weibull_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType a()const; RealType b()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const weibull_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, weibull_distribution& x);};}

[edit]Class template std::extreme_value_distribution

namespace std {template<class RealType =double>class extreme_value_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions extreme_value_distribution(): extreme_value_distribution(0.0){}explicit extreme_value_distribution(RealType a, RealType b =1.0);explicit extreme_value_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const extreme_value_distribution& x, const extreme_value_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType a()const; RealType b()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const extreme_value_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, extreme_value_distribution& x);};}

[edit]Class template std::normal_distribution

namespace std {template<class RealType =double>class normal_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructors and reset functions normal_distribution(): normal_distribution(0.0){}explicit normal_distribution(RealType mean, RealType stddev =1.0);explicit normal_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const normal_distribution& x, const normal_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType mean()const; RealType stddev()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const normal_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, normal_distribution& x);};}

[edit]Class template std::lognormal_distribution

namespace std {template<class RealType =double>class lognormal_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions lognormal_distribution(): lognormal_distribution(0.0){}explicit lognormal_distribution(RealType m, RealType s =1.0);explicit lognormal_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const lognormal_distribution& x, const lognormal_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType m()const; RealType s()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const lognormal_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, lognormal_distribution& x);};}

[edit]Class template std::chi_squared_distribution

namespace std {template<class RealType =double>class chi_squared_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions chi_squared_distribution(): chi_squared_distribution(1.0){}explicit chi_squared_distribution(RealType n);explicit chi_squared_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const chi_squared_distribution& x, const chi_squared_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType n()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const chi_squared_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, chi_squared_distribution& x);};}

[edit]Class template std::cauchy_distribution

namespace std {template<class RealType =double>class cauchy_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions cauchy_distribution(): cauchy_distribution(0.0){}explicit cauchy_distribution(RealType a, RealType b =1.0);explicit cauchy_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const cauchy_distribution& x, const cauchy_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType a()const; RealType b()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const cauchy_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, cauchy_distribution& x);};}

[edit]Class template std::fisher_f_distribution

namespace std {template<class RealType =double>class fisher_f_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions fisher_f_distribution(): fisher_f_distribution(1.0){}explicit fisher_f_distribution(RealType m, RealType n =1.0);explicit fisher_f_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const fisher_f_distribution& x, const fisher_f_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType m()const; RealType n()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const fisher_f_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, fisher_f_distribution& x);};}

[edit]Class template std::student_t_distribution

namespace std {template<class RealType =double>class student_t_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions student_t_distribution(): student_t_distribution(1.0){}explicit student_t_distribution(RealType n);explicit student_t_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const student_t_distribution& x, const student_t_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions RealType n()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const student_t_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, student_t_distribution& x);};}

[edit]Class template std::discrete_distribution

namespace std {template<class IntType =int>class discrete_distribution {public:// typesusing result_type = IntType;using param_type =/* unspecified */;   // constructor and reset functions discrete_distribution();template<class InputIter> discrete_distribution(InputIter firstW, InputIter lastW); discrete_distribution(initializer_list<double> wl);template<class UnaryOperation> discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);explicit discrete_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const discrete_distribution& x, const discrete_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions vector<double> probabilities()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<(basic_ostream<CharT, Traits>& os, const discrete_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, discrete_distribution& x);};}

[edit]Class template std::piecewise_constant_distribution

namespace std {template<class RealType =double>class piecewise_constant_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions piecewise_constant_distribution();template<class InputIterB, class InputIterW> piecewise_constant_distribution(InputIterB firstB, InputIterB lastB, InputIterW firstW);template<class UnaryOperation> piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);template<class UnaryOperation> piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);explicit piecewise_constant_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const piecewise_constant_distribution& x, const piecewise_constant_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions vector<result_type> intervals()const; vector<result_type> densities()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const piecewise_constant_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, piecewise_constant_distribution& x);};}

[edit]Class template std::piecewise_linear_distribution

namespace std {template<class RealType =double>class piecewise_linear_distribution {public:// typesusing result_type = RealType;using param_type =/* unspecified */;   // constructor and reset functions piecewise_linear_distribution();template<class InputIterB, class InputIterW> piecewise_linear_distribution(InputIterB firstB, InputIterB lastB, InputIterW firstW);template<class UnaryOperation> piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);template<class UnaryOperation> piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);explicit piecewise_linear_distribution(const param_type& parm);void reset();   // equality operatorsfriendbool operator==(const piecewise_linear_distribution& x, const piecewise_linear_distribution& y);   // generating functionstemplate<class URBG> result_type operator()(URBG& g);template<class URBG> result_type operator()(URBG& g, const param_type& parm);   // property functions vector<result_type> intervals()const; vector<result_type> densities()const; param_type param()const;void param(const param_type& parm); result_type min()const; result_type max()const;   // inserters and extractorstemplate<class CharT, class Traits>friend basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const piecewise_linear_distribution& x);template<class CharT, class Traits>friend basic_istream<CharT, Traits>& operator>>(basic_istream<CharT, Traits>& is, piecewise_linear_distribution& x);};}
close