Namespaces
Variants
Actions

std::sinh(std::complex)

From cppreference.com
< cpp‎ | numeric‎ | complex
 
 
 
 
Defined in header <complex>
template<class T >
complex<T> sinh(const complex<T>& z );
(since C++11)

Computes complex hyperbolic sine of a complex value z.

Contents

[edit]Parameters

z - complex value

[edit]Return value

If no errors occur, complex hyperbolic sine of z is returned.

[edit]Error handling and special values

Errors are reported consistent with math_errhandling.

If the implementation supports IEEE floating-point arithmetic,

  • std::sinh(std::conj(z))==std::conj(std::sinh(z))
  • std::sinh(z)==-std::sinh(-z)
  • If z is (+0,+0), the result is (+0,+0)
  • If z is (+0,+∞), the result is (±0,NaN) (the sign of the real part is unspecified) and FE_INVALID is raised
  • If z is (+0,NaN), the result is (±0,NaN)
  • If z is (x,+∞) (for any positive finite x), the result is (NaN,NaN) and FE_INVALID is raised
  • If z is (x,NaN) (for any positive finite x), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (+∞,+0), the result is (+∞,+0)
  • If z is (+∞,y) (for any positive finite y), the result is +∞cis(y)
  • If z is (+∞,+∞), the result is (±∞,NaN) (the sign of the real part is unspecified) and FE_INVALID is raised
  • If z is (+∞,NaN), the result is (±∞,NaN) (the sign of the real part is unspecified)
  • If z is (NaN,+0), the result is (NaN,+0)
  • If z is (NaN,y) (for any finite nonzero y), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (NaN,NaN), the result is (NaN,NaN)

where cis(y) is cos(y) + i sin(y).

[edit]Notes

Mathematical definition of hyperbolic sine is sinh z =
ez
-e-z
2
.

Hyperbolic sine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi.

[edit]Example

#include <cmath>#include <complex>#include <iostream>   int main(){std::cout<<std::fixed;std::complex<double> z(1.0, 0.0);// behaves like real sinh along the real linestd::cout<<"sinh"<< z <<" = "<<std::sinh(z)<<" (sinh(1) = "<<std::sinh(1)<<")\n";   std::complex<double> z2(0.0, 1.0);// behaves like sine along the imaginary linestd::cout<<"sinh"<< z2 <<" = "<<std::sinh(z2)<<" ( sin(1) = "<<std::sin(1)<<")\n";}

Output:

sinh(1.000000,0.000000) = (1.175201,0.000000) (sinh(1) = 1.175201) sinh(0.000000,1.000000) = (0.000000,0.841471) ( sin(1) = 0.841471)

[edit]See also

computes hyperbolic cosine of a complex number (cosh(z))
(function template)[edit]
computes hyperbolic tangent of a complex number (tanh(z))
(function template)[edit]
computes area hyperbolic sine of a complex number (arsinh(z))
(function template)[edit]
(C++11)(C++11)
computes hyperbolic sine (sinh(x))
(function)[edit]
applies the function std::sinh to each element of valarray
(function template)[edit]
C documentation for csinh
close