Namespaces
Variants
Actions

Explicit (full) template specialization

From cppreference.com
< cpp‎ | language
 
 
C++ language
General topics
Flow control
Conditional execution statements
Iteration statements (loops)
Jump statements
Functions
Function declaration
Lambda function expression
inline specifier
Dynamic exception specifications(until C++17*)
noexcept specifier(C++11)
Exceptions
Namespaces
Types
Specifiers
constexpr(C++11)
consteval(C++20)
constinit(C++20)
Storage duration specifiers
Initialization
Expressions
Alternative representations
Literals
Boolean - Integer - Floating-point
Character - String - nullptr(C++11)
User-defined(C++11)
Utilities
Attributes(C++11)
Types
typedef declaration
Type alias declaration(C++11)
Casts
Memory allocation
Classes
Class-specific function properties
Special member functions
Templates
Template specialization
Parameter packs(C++11)
Miscellaneous
 
 
 
 

Allows customizing the template code for a given set of template arguments.

Contents

[edit]Syntax

template <>declaration

Any of the following can be fully specialized:

  1. function template
  2. class template
  3. variable template(since C++14)
  4. member function of a class template
  5. static data member of a class template
  6. member class of a class template
  7. member enumeration of a class template
  8. member class template of a class or class template
  9. member function template of a class or class template
  10. member variable template of a class or class template(since C++14)

For example,

#include <type_traits>   template<typename T>// primary templatestruct is_void :std::false_type{};template<>// explicit specialization for T = voidstruct is_void<void>:std::true_type{};   int main(){ static_assert(is_void<char>::value==false, "for any type T other than void, the class is derived from false_type"); static_assert(is_void<void>::value==true, "but when T is void, the class is derived from true_type");}

[edit]In detail

Explicit specialization may be declared in any scope where its primary template may be defined (which may be different from the scope where the primary template is defined; such as with out-of-class specialization of a member template). Explicit specialization has to appear after the non-specialized template declaration.

namespace N {template<class T>// primary templateclass X {/*...*/};template<>// specialization in same namespaceclass X<int>{/*...*/};   template<class T>// primary templateclass Y {/*...*/};template<>// forward declare specialization for doubleclass Y<double>;}   template<>// OK: specialization in same namespaceclass N::Y<double>{/*...*/};

Specialization must be declared before the first use that would cause implicit instantiation, in every translation unit where such use occurs:

class String {};   template<class T>class Array {/*...*/};   template<class T>// primary templatevoid sort(Array<T>& v){/*...*/}   void f(Array<String>& v){ sort(v);// implicitly instantiates sort(Array<String>&), }// using the primary template for sort()   template<>// ERROR: explicit specialization of sort(Array<String>)void sort<String>(Array<String>& v);// after implicit instantiation

A template specialization that was declared but not defined can be used just like any other incomplete type (e.g. pointers and references to it may be used):

template<class T>// primary templateclass X;template<>// specialization (declared, not defined)class X<int>;   X<int>* p;// OK: pointer to incomplete type X<int> x;// error: object of incomplete type

Whether an explicit specialization of a function or variable(since C++14) template is inline/constexpr(since C++11)/constinit/consteval(since C++20) is determined by the explicit specialization itself, regardless of whether the primary template is declared with that specifier. Similarly, attributes appearing in the declaration of a template have no effect on an explicit specialization of that template:(since C++11)

template<class T>void f(T){/* ... */}template<>inlinevoid f<>(int){/* ... */}// OK, inline   template<class T>inline T g(T){/* ... */}template<>int g<>(int){/* ... */}// OK, not inline   template<typename>[[noreturn]]void h([[maybe_unused]]int i);template<>void h<int>(int i){// [[noreturn]] has no effect, but [[maybe_unused]] has}

[edit]Explicit specializations of function templates

When specializing a function template, its template arguments can be omitted if template argument deduction can provide them from the function arguments:

template<class T>class Array {/*...*/};   template<class T>// primary templatevoid sort(Array<T>& v);template<>// specialization for T = intvoid sort(Array<int>&);   // no need to write// template<> void sort<int>(Array<int>&);

A function with the same name and the same argument list as a specialization is not a specialization (see template overloading in function template).

Default function arguments cannot be specified in explicit specializations of function templates, member function templates, and member functions of class templates when the class is implicitly instantiated.

An explicit specialization cannot be a friend declaration.

[edit]Members of specializations

When defining a member of an explicitly specialized class template outside the body of the class, the syntax template<> is not used, except if it's a member of an explicitly specialized member class template, which is specialized as a class template, because otherwise, the syntax would require such definition to begin with template<parameters> required by the nested template

template<typename T>struct A {struct B {};// member class    template<class U>// member class templatestruct C {};};   template<>// specializationstruct A<int>{void f(int);// member function of a specialization};// template<> not used for a member of a specializationvoid A<int>::f(int){/* ... */}   template<>// specialization of a member classstruct A<char>::B{void f();};// template<> not used for a member of a specialized member class eithervoid A<char>::B::f(){/* ... */}   template<>// specialization of a member class templatetemplate<class U>struct A<char>::C{void f();};   // template<> is used when defining a member of an explicitly// specialized member class template specialized as a class templatetemplate<>template<class U>void A<char>::C<U>::f(){/* ... */}


An explicit specialization of a static data member of a template is a definition if the declaration includes an initializer; otherwise, it is a declaration. These definitions must use braces for default initialization:

template<> X Q<int>::x;// declaration of a static membertemplate<> X Q<int>::x();// error: function declarationtemplate<> X Q<int>::x{};// definition of a default-initialized static member

A member or a member template of a class template may be explicitly specialized for a given implicit instantiation of the class template, even if the member or member template is defined in the class template definition.

template<typename T>struct A {void f(T);// member, declared in the primary template   void h(T){}// member, defined in the primary template   template<class X1>// member templatevoid g1(T, X1);   template<class X2>// member templatevoid g2(T, X2);};   // specialization of a membertemplate<>void A<int>::f(int);   // member specialization OK even if defined in-classtemplate<>void A<int>::h(int){}   // out of class member template definitiontemplate<class T>template<class X1>void A<T>::g1(T, X1){}   // member template specializationtemplate<>template<class X1>void A<int>::g1(int, X1);   // member template specializationtemplate<>template<>void A<int>::g2<char>(int, char);// for X2 = char   // same, using template argument deduction (X1 = char)template<>template<>void A<int>::g1(int, char);

A member or a member template may be nested within many enclosing class templates. In an explicit specialization for such a member, there's a template<> for every enclosing class template that is explicitly specialized.

template<class T1>struct A {template<class T2>struct B {template<class T3>void mf();};};   template<>struct A<int>;   template<>template<>struct A<char>::B<double>;   template<>template<>template<>void A<char>::B<char>::mf<double>();

In such a nested declaration, some of the levels may remain unspecialized (except that it can't specialize a class member template in namespace scope if its enclosing class is unspecialized). For each of those levels, the declaration needs template<arguments>, because such specializations are themselves templates:

template<class T1>class A {template<class T2>class B {template<class T3>// member templatevoid mf1(T3);   void mf2();// non-template member};};   // specializationtemplate<>// for the specialized Atemplate<class X>// for the unspecialized Bclass A<int>::B{template<class T>void mf1(T);};   // specializationtemplate<>// for the specialized Atemplate<>// for the specialized Btemplate<class T>// for the unspecialized mf1void A<int>::B<double>::mf1(T t){}   // ERROR: B<double> is specialized and is a member template, so its enclosing A// must be specialized alsotemplate<class Y>template<>void A<Y>::B<double>::mf2(){}

[edit]Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
CWG 531C++98 the syntax of defining members of explicit
specializations in namespace scope was not specified
specified
CWG 727C++98 partial and full specializations not allowed in
class scope
allowed in any scope
CWG 730C++98 member templates of non-template
classes could not be fully specialized
allowed
CWG 2478C++20 it was unclear whether the constinit and consteval of the
primary template are carried over into its explicit specializations
not carried over
CWG 2604C++11 it was unclear whether the attributes of the primary
template are carried over into its explicit specializations
not carried over

[edit]See also

close