Template arguments
In order for a template to be instantiated, every template parameter must be replaced by a corresponding template argument. The arguments are either explicitly provided, deduced or defaulted.
Each parameter in template-parameter-list (see template identifier syntax) belongs to one of the following categories:
- constant template argument
- type template argument
- template template argument
Contents |
[edit]Constant template arguments
Also known as non-type template arguments (see below).
The template argument that can be used with a constant template parameter can be any manifestly constant-evaluated expression. | (until C++11) |
The template argument that can be used with a constant template parameter can be any initializer clause. If the initializer clause is an expression, it must be manifestly constant-evaluated. | (since C++11) |
Given the type of the constant template parameter declaration as T
and the template argument provided for the parameter as E.
The invented declaration T x = E; must satisfy the semantic constraints for the definition of a constexpr variable with static storage duration. | (since C++20) |
If If a deduced parameter type is not a structural type, the program is ill-formed. For constant template parameter packs whose type uses a placeholder type, the type is independently deduced for each template argument and need not match. | (since C++17) |
template<auto n>struct B {/* ... */}; B<5> b1;// OK: constant template parameter type is int B<'a'> b2;// OK: constant template parameter type is char B<2.5> b3;// error (until C++20): constant template parameter type cannot be double // C++20 deduced class type placeholder, class template arguments are deduced at the// call sitetemplate<std::array arr>void f(); f<std::array<double, 8>{}>(); template<auto...>struct C {}; C<'C', 0, 2L, nullptr> x;// OK
The value of a constant template parameter P of (possibly deduced)(since C++17) type T
is determined from its template argument A as follows:
| (until C++11) |
| (since C++11) (until C++20) |
| (since C++20) |
template<int i>struct C {/* ... */}; C<{42}> c1;// OK template<auto n>struct B {/* ... */}; struct J1 { J1* self = this;}; B<J1{}> j1;// error: initialization of the template parameter object// is not a constant expression struct J2 { J2 *self = this;constexpr J2(){}constexpr J2(const J2&){}}; B<J2{}> j2;// error: the template parameter object is not// template-argument-equivalent to introduced temporary
The following limitations apply when instantiating templates that have constant template parameters:
In particular, this implies that string literals, addresses of array elements, and addresses of non-static members cannot be used as template arguments to instantiate templates whose corresponding constant template parameters are pointers to objects. | (until C++17) |
constant template parameters of reference or pointer type and non-static data members of reference or pointer type in a constant template parameter of class type and its subobjects(since C++20) cannot refer to/be the address of
| (since C++17) |
template<constint* pci>struct X {}; int ai[10]; X<ai> xi;// OK: array to pointer conversion and cv-qualification conversion struct Y {}; template<const Y& b>struct Z {}; Y y; Z<y> z;// OK: no conversion template<int(&pa)[5]>struct W {}; int b[5]; W<b> w;// OK: no conversion void f(char);void f(int); template<void(*pf)(int)>struct A {}; A<&f> a;// OK: overload resolution selects f(int)
template<class T, constchar* p>class X {}; X<int, "Studebaker"> x1;// error: string literal as template-argument template<int* p>class X {}; int a[10]; struct S {int m;staticint s;} s; X<&a[2]> x3;// error (until C++20): address of array element X<&s.m> x4;// error (until C++20): address of non-static member X<&s.s> x5;// OK: address of static member X<&S::s> x6;// OK: address of static member template<constint& CRI>struct B {}; B<1> b2;// error: temporary would be required for template argumentint c =1; B<c> b1;// OK
[edit]Type template arguments
A template argument for a type template parameter must be a type-id, which may name an incomplete type:
template<typename T>class X {};// class template struct A;// incomplete typetypedefstruct{} B;// type alias to an unnamed type int main(){ X<A> x1;// OK: 'A' names a type X<A*> x2;// OK: 'A*' names a type X<B> x3;// OK: 'B' names a type}
[edit]Template template arguments
A template argument for a template template parameter must be an id-expression which names a class template or a template alias.
When the argument is a class template, only the primary template is considered when matching the parameter. The partial specializations, if any, are only considered when a specialization based on this template template parameter happens to be instantiated.
template<typename T>// primary templateclass A {int x;}; template<typename T>// partial specializationclass A<T*>{long x;}; // class template with a template template parameter Vtemplate<template<typename>class V>class C { V<int> y;// uses the primary template V<int*> z;// uses the partial specialization}; C<A> c;// c.y.x has type int, c.z.x has type long
To match a template template argument A
to a template template parameter P
, P
must be at least as specialized as A
(see below). If P
's parameter list includes a parameter pack, zero or more template parameters (or parameter packs) from A
's template parameter list are matched by it.(since C++11)
Formally, a template template-parameter P
is at least as specialized as a template template argument A
if, given the following rewrite to two function templates, the function template corresponding to P
is at least as specialized as the function template corresponding to A
according to the partial ordering rules for function templates. Given an invented class template X
with the template parameter list of A
(including default arguments):
- Each of the two function templates has the same template parameters, respectively, as
P
orA
. - Each function template has a single function parameter whose type is a specialization of
X
with template arguments corresponding to the template parameters from the respective function template where, for each template parameterPP
in the template parameter list of the function template, a corresponding template argumentAA
is formed. IfPP
declares a parameter pack, thenAA
is the pack expansionPP...
; otherwise,(since C++11)AA
is the id-expressionPP
.
If the rewrite produces an invalid type, then P
is not at least as specialized as A
.
template<typename T>struct eval;// primary template template<template<typename, typename...>class TT, typename T1, typename... Rest>struct eval<TT<T1, Rest...>>{};// partial specialization of eval template<typename T1>struct A;template<typename T1, typename T2>struct B;template<int N>struct C;template<typename T1, int N>struct D;template<typename T1, typename T2, int N =17>struct E; eval<A<int>> eA;// OK: matches partial specialization of eval eval<B<int, float>> eB;// OK: matches partial specialization of eval eval<C<17>> eC;// error: C does not match TT in partial specialization// because TT's first parameter is a// type template parameter, while 17 does not name a type eval<D<int, 17>> eD;// error: D does not match TT in partial specialization// because TT's second parameter is a// type parameter pack, while 17 does not name a type eval<E<int, float>> eE;// error: E does not match TT in partial specialization// because E's third (default) parameter is a constant
Before the adoption of P0522R0, each of the template parameters of A
must match corresponding template parameters of P
exactly. This hinders many reasonable template argument from being accepted.
Although it was pointed out very early (CWG#150), by the time it was resolved, the changes were applied to the C++17 working paper and the resolution became a de facto C++17 feature. Many compilers disable it by default:
- GCC disables it in all language modes prior to C++17 by default, it can only be enabled by setting a compiler flag in these modes.
- Clang disables it in all language modes by default, it can only be enabled by setting a compiler flag.
- Microsoft Visual Studio treats it as a normal C++17 feature and only enables it in C++17 and later language modes (i.e. no support in C++14 language mode, which is the default mode).
template<class T>class A {/* ... */};template<class T, class U = T>class B {/* ... */};template<class... Types>class C {/* ... */}; template<template<class>class P>class X {/* ... */}; X<A> xa;// OK X<B> xb;// OK after P0522R0// Error earlier: not an exact match X<C> xc;// OK after P0522R0// Error earlier: not an exact match template<template<class...>class Q>class Y {/* ... */}; Y<A> ya;// OK Y<B> yb;// OK Y<C> yc;// OK template<auto n>class D {/* ... */};// note: C++17template<template<int>class R>class Z {/* ... */}; Z<D> zd;// OK after P0522R0: the template parameter// is more specialized than the template argument template<int>struct SI {/* ... */};template<template<auto>class>void FA();// note: C++17 FA<SI>();// Error
[edit]Template argument equivalence
Template argument equivalence is used to determine whether two template identifiers are same.
Two values are template-argument-equivalent if they are of the same type and any of the following conditions is satisfied:
- They are of integral or enumeration type and their values are the same.
- They are of pointer type and they have the same pointer value.
- They are of pointer-to-member type and they refer to the same class member or are both the null member pointer value.
- They are of lvalue reference type and they refer to the same object or function.
| (since C++11) |
| (since C++20) |
[edit]Ambiguity resolution
If a template argument can be interpreted as both a type-id and an expression, it is always interpreted as a type-id, even if the corresponding template parameter is constant:
template<class T>void f();// #1 template<int I>void f();// #2 void g(){ f<int()>();// “int()” is both a type and an expression,// calls #1 because it is interpreted as a type}
[edit]Notes
Before C++26, constant template argument were called non-type template argument in the standard wording. The terminology was changed by P2841R6 / PR #7587.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_template_template_args | 201611L | (C++17) (DR) | Matching of template template arguments |
__cpp_nontype_template_args | 201411L | (C++17) | Allow constant evaluation for all constant template arguments |
201911L | (C++20) | Class types and floating-point types in constant template parameters |
[edit]Example
This section is incomplete Reason: no example |
[edit]Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
CWG 150 (P0522R0) | C++98 | template-template arguments had to match parameter lists of template-template parameters exactly | more specialized also allowed |
CWG 354 | C++98 | null pointer values could not be constant template arguments | allowed |
CWG 1398 | C++11 | constant template arguments could not have type std::nullptr_t | allowed |
CWG 1570 | C++98 | constant template arguments could designate addresses of subobjects | not allowed |
P2308R1 | C++11 C++20 | 1. list-initialization was not allowed for constant template arguments (C++11) 2. it was unclear how constant template parameters of class types are initialized (C++20) | 1. allowed 2. made clear |