Namespaces
Variants
Actions

clogf, clog, clogl

From cppreference.com
< c‎ | numeric‎ | complex
Defined in header <complex.h>
floatcomplex       clogf(floatcomplex z );
(1) (since C99)
doublecomplex      clog(doublecomplex z );
(2) (since C99)
longdoublecomplex clogl(longdoublecomplex z );
(3) (since C99)
Defined in header <tgmath.h>
#define log( z )
(4) (since C99)
1-3) Computes the complex natural (base-e) logarithm of z with branch cut along the negative real axis.
4) Type-generic macro: If z has type longdoublecomplex, clogl is called. if z has type doublecomplex, clog is called, if z has type floatcomplex, clogf is called. If z is real or integer, then the macro invokes the corresponding real function (logf, log, logl). If z is imaginary, the corresponding complex number version is called.

Contents

[edit]Parameters

z - complex argument

[edit]Return value

If no errors occur, the complex natural logarithm of z is returned, in the range of a strip in the interval [−iπ, +iπ] along the imaginary axis and mathematically unbounded along the real axis.

[edit]Error handling and special values

Errors are reported consistent with math_errhandling

If the implementation supports IEEE floating-point arithmetic,

  • The function is continuous onto the branch cut taking into account the sign of imaginary part
  • clog(conj(z))==conj(clog(z))
  • If z is -0+0i, the result is -∞+πi and FE_DIVBYZERO is raised
  • If z is +0+0i, the result is -∞+0i and FE_DIVBYZERO is raised
  • If z is x+∞i (for any finite x), the result is +∞+πi/2
  • If z is x+NaNi (for any finite x), the result is NaN+NaNi and FE_INVALID may be raised
  • If z is -∞+yi (for any finite positive y), the result is +∞+πi
  • If z is +∞+yi (for any finite positive y), the result is +∞+0i
  • If z is -∞+∞i, the result is +∞+3πi/4
  • If z is +∞+∞i, the result is +∞+πi/4
  • If z is ±∞+NaNi, the result is +∞+NaNi
  • If z is NaN+yi (for any finite y), the result is NaN+NaNi and FE_INVALID may be raised
  • If z is NaN+∞i, the result is +∞+NaNi
  • If z is NaN+NaNi, the result is NaN+NaNi

[edit]Notes

The natural logarithm of a complex number z with polar coordinate components (r,θ) equals ln r + i(θ+2nπ), with the principal value ln r + iθ

[edit]Example

#include <stdio.h>#include <math.h>#include <complex.h>   int main(void){doublecomplex z = clog(I);// r = 1, θ = pi/2printf("2*log(i) = %.1f%+fi\n", creal(2*z), cimag(2*z));   doublecomplex z2 = clog(sqrt(2)/2+sqrt(2)/2*I);// r = 1, θ = pi/4printf("4*log(sqrt(2)/2+sqrt(2)i/2) = %.1f%+fi\n", creal(4*z2), cimag(4*z2));   doublecomplex z3 = clog(-1);// r = 1, θ = piprintf("log(-1+0i) = %.1f%+fi\n", creal(z3), cimag(z3));   doublecomplex z4 = clog(conj(-1));// or clog(CMPLX(-1, -0.0)) in C11printf("log(-1-0i) (the other side of the cut) = %.1f%+fi\n", creal(z4), cimag(z4));}

Output:

2*log(i) = 0.0+3.141593i 4*log(sqrt(2)/2+sqrt(2)i/2) = 0.0+3.141593i log(-1+0i) = 0.0+3.141593i log(-1-0i) (the other side of the cut) = 0.0-3.141593i

[edit]References

  • C11 standard (ISO/IEC 9899:2011):
  • 7.3.7.2 The clog functions (p: 195)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • G.6.3.2 The clog functions (p: 543-544)
  • G.7 Type-generic math <tgmath.h> (p: 545)
  • C99 standard (ISO/IEC 9899:1999):
  • 7.3.7.2 The clog functions (p: 176-177)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • G.6.3.2 The clog functions (p: 478-479)
  • G.7 Type-generic math <tgmath.h> (p: 480)

[edit]See also

(C99)(C99)(C99)
computes the complex base-e exponential
(function)[edit]
(C99)(C99)
computes natural (base-e) logarithm (ln(x))
(function)[edit]
close