Namespaces
Variants
Actions

casinhf, casinh, casinhl

From cppreference.com
< c‎ | numeric‎ | complex
Defined in header <complex.h>
floatcomplex       casinhf(floatcomplex z );
(1) (since C99)
doublecomplex      casinh(doublecomplex z );
(2) (since C99)
longdoublecomplex casinhl(longdoublecomplex z );
(3) (since C99)
Defined in header <tgmath.h>
#define asinh( z )
(4) (since C99)
1-3) Computes the complex arc hyperbolic sine of z with branch cuts outside the interval [−i; +i] along the imaginary axis.
4) Type-generic macro: If z has type longdoublecomplex, casinhl is called. if z has type doublecomplex, casinh is called, if z has type floatcomplex, casinhf is called. If z is real or integer, then the macro invokes the corresponding real function (asinhf, asinh, asinhl). If z is imaginary, then the macro invokes the corresponding real version of the function asin, implementing the formula asinh(iy) = i asin(y), and the return type is imaginary.

Contents

[edit]Parameters

z - complex argument

[edit]Return value

If no errors occur, the complex arc hyperbolic sine of z is returned, in the range of a strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.

[edit]Error handling and special values

Errors are reported consistent with math_errhandling

If the implementation supports IEEE floating-point arithmetic,

  • casinh(conj(z))==conj(casinh(z))
  • casinh(-z)==-casinh(z)
  • If z is +0+0i, the result is +0+0i
  • If z is x+∞i (for any positive finite x), the result is +∞+π/2
  • If z is x+NaNi (for any finite x), the result is NaN+NaNi and FE_INVALID may be raised
  • If z is +∞+yi (for any positive finite y), the result is +∞+0i
  • If z is +∞+∞i, the result is +∞+iπ/4
  • If z is +∞+NaNi, the result is +∞+NaNi
  • If z is NaN+0i, the result is NaN+0i
  • If z is NaN+yi (for any finite nonzero y), the result is NaN+NaNi and FE_INVALID may be raised
  • If z is NaN+∞i, the result is ±∞+NaNi (the sign of the real part is unspecified)
  • If z is NaN+NaNi, the result is NaN+NaNi

[edit]Notes

Although the C standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".

Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-i∞,-i) and (i,i∞) of the imaginary axis.

The mathematical definition of the principal value of the inverse hyperbolic sine is asinh z = ln(z + 1+z2
)

For any z, asinh(z) =
asin(iz)
i

[edit]Example

#include <stdio.h>#include <complex.h>   int main(void){doublecomplex z = casinh(0+2*I);printf("casinh(+0+2i) = %f%+fi\n", creal(z), cimag(z));   doublecomplex z2 = casinh(-conj(2*I));// or casinh(CMPLX(-0.0, 2)) in C11printf("casinh(-0+2i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2));   // for any z, asinh(z) = asin(iz)/idoublecomplex z3 = casinh(1+2*I);printf("casinh(1+2i) = %f%+fi\n", creal(z3), cimag(z3));doublecomplex z4 =casin((1+2*I)*I)/I;printf("casin(i * (1+2i))/i = %f%+fi\n", creal(z4), cimag(z4));}

Output:

casinh(+0+2i) = 1.316958+1.570796i casinh(-0+2i) (the other side of the cut) = -1.316958+1.570796i casinh(1+2i) = 1.469352+1.063440i casin(i * (1+2i))/i = 1.469352+1.063440i

[edit]References

  • C11 standard (ISO/IEC 9899:2011):
  • 7.3.6.2 The casinh functions (p: 192-193)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • G.6.2.2 The casinh functions (p: 540)
  • G.7 Type-generic math <tgmath.h> (p: 545)
  • C99 standard (ISO/IEC 9899:1999):
  • 7.3.6.2 The casinh functions (p: 174-175)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • G.6.2.2 The casinh functions (p: 475)
  • G.7 Type-generic math <tgmath.h> (p: 480)

[edit]See also

(C99)(C99)(C99)
computes the complex arc hyperbolic cosine
(function)[edit]
(C99)(C99)(C99)
computes the complex arc hyperbolic tangent
(function)[edit]
(C99)(C99)(C99)
computes the complex hyperbolic sine
(function)[edit]
(C99)(C99)(C99)
computes inverse hyperbolic sine (arsinh(x))
(function)[edit]
close