4
$\begingroup$

Let $f: (0,\infty) \rightarrow [0,\infty]$ be Borel-measurable function. And let $a,b \in (0,\infty)$. We want to show that $$\int_{0}^{\infty} \int_{0}^{\infty} f(s+t)s^{a} \frac{ds}{s}t^{b} \frac{dt}{t} = B(a,b)\int_{0}^{\infty} f(u) u^{a+b} \frac{du}{u},$$ where $B(a,b) = \int_{0}^{1} v^{a-1} (1-v)^{b-1}dv$.
My attempt: I first try to start from the left-hand side. I first evalute $\int_{0}^{\infty} f(s+t)s^a \frac{ds}{s}$. I let $u = s+t$. So we have $du = ds$. We plug in and get \begin{align} \int_{0}^{\infty} f(s+t)s^{a}\frac{ds}{s} &= \int_{t}^{\infty} f(u)(u-t)^a\frac{du}{u-t}\\ &= \frac{(u-t)^a}{u-t} \int_{t}^{\infty} f(u)du. \end{align} So we have $$\int_{0}^{\infty}\int_{0}^{\infty} f(s+t)s^a\frac{ds}{s} t^{b} \frac{dt}{t} = \int_{0}^{\infty}\frac{(u-t)^a}{u-t} \int_{t}^{\infty} f(u)du t^b\frac{dt}{t}.$$ But I don't know how to go from here to relate it to $B(a,b)$. Please help! Thanks!

$\endgroup$

    1 Answer 1

    3
    $\begingroup$

    let us use the substitution $s=uv,t=u(1-v)$ we have that $u$ ranges from $0$ to $\infty$ while $v$ ranges from $0$ to $1$. Using this we get

    \begin{align} \int_{0}^{\infty} \int_{0}^{\infty} f(s+t)s^{a-1} t^{b-1} \, ds \, dt=\int_{0}^{1} \int_{0}^{\infty} f(u)(uv)^{a-1} (u(1-v))^{b-1} \, udu \, dv=\\ \int_{0}^1 \int_{0}^{\infty} f(u) u^{a+b-1} v^{a-1} (1-v)^{b-1} \, du \, dv=B(a,b)\int_{0}^{\infty} f(u) u^{a+b-1} \, du.\end{align}

    $\endgroup$

      You must log in to answer this question.

      Start asking to get answers

      Find the answer to your question by asking.

      Ask question

      Explore related questions

      See similar questions with these tags.