Let X is random variable with probability density function $f_x(x)$.
If the pdf is scaled by a constant $c$ such that $f_y(y) = c*f_x(x)$, how does the random variable Y corresponding to the pdf $f_y(y)$ relate to random variable X?
Is $f_y(y)$ is a probability density function?
I would like to add more details.
If $f_x(x)\sim\mathcal{X}_v^2$ this also means, $f_x(x)\sim\Gamma(k=v/2, \theta=2)$.
Then does $c*f_x(x)\sim\Gamma(k=v/2, \theta=2c)$?