This library provides unofficial Go clients for OpenAI API. We support:
- ChatGPT 4o, o1
- GPT-3, GPT-4
- DALL·E 2, DALL·E 3
- Whisper
go get github.com/sashabaranov/go-openai
Currently, go-openai requires Go version 1.18 or greater.
package main import ( "context""fmt" openai "github.com/sashabaranov/go-openai" ) funcmain() { client:=openai.NewClient("your token") resp, err:=client.CreateChatCompletion( context.Background(), openai.ChatCompletionRequest{ Model: openai.GPT3Dot5Turbo, Messages: []openai.ChatCompletionMessage{ { Role: openai.ChatMessageRoleUser, Content: "Hello!", }, }, }, ) iferr!=nil { fmt.Printf("ChatCompletion error: %v\n", err) return } fmt.Println(resp.Choices[0].Message.Content) }
- Visit the OpenAI website at https://platform.openai.com/account/api-keys.
- If you don't have an account, click on "Sign Up" to create one. If you do, click "Log In".
- Once logged in, navigate to your API key management page.
- Click on "Create new secret key".
- Enter a name for your new key, then click "Create secret key".
- Your new API key will be displayed. Use this key to interact with the OpenAI API.
Note: Your API key is sensitive information. Do not share it with anyone.
ChatGPT streaming completion
package main import ( "context""errors""fmt""io" openai "github.com/sashabaranov/go-openai" ) funcmain() { c:=openai.NewClient("your token") ctx:=context.Background() req:= openai.ChatCompletionRequest{ Model: openai.GPT3Dot5Turbo, MaxTokens: 20, Messages: []openai.ChatCompletionMessage{ { Role: openai.ChatMessageRoleUser, Content: "Lorem ipsum", }, }, Stream: true, } stream, err:=c.CreateChatCompletionStream(ctx, req) iferr!=nil { fmt.Printf("ChatCompletionStream error: %v\n", err) return } deferstream.Close() fmt.Printf("Stream response: ") for { response, err:=stream.Recv() iferrors.Is(err, io.EOF) { fmt.Println("\nStream finished") return } iferr!=nil { fmt.Printf("\nStream error: %v\n", err) return } fmt.Printf(response.Choices[0].Delta.Content) } }
GPT-3 completion
package main import ( "context""fmt" openai "github.com/sashabaranov/go-openai" ) funcmain() { c:=openai.NewClient("your token") ctx:=context.Background() req:= openai.CompletionRequest{ Model: openai.GPT3Babbage002, MaxTokens: 5, Prompt: "Lorem ipsum", } resp, err:=c.CreateCompletion(ctx, req) iferr!=nil { fmt.Printf("Completion error: %v\n", err) return } fmt.Println(resp.Choices[0].Text) }
GPT-3 streaming completion
package main import ( "errors""context""fmt""io" openai "github.com/sashabaranov/go-openai" ) funcmain() { c:=openai.NewClient("your token") ctx:=context.Background() req:= openai.CompletionRequest{ Model: openai.GPT3Babbage002, MaxTokens: 5, Prompt: "Lorem ipsum", Stream: true, } stream, err:=c.CreateCompletionStream(ctx, req) iferr!=nil { fmt.Printf("CompletionStream error: %v\n", err) return } deferstream.Close() for { response, err:=stream.Recv() iferrors.Is(err, io.EOF) { fmt.Println("Stream finished") return } iferr!=nil { fmt.Printf("Stream error: %v\n", err) return } fmt.Printf("Stream response: %v\n", response) } }
Audio Speech-To-Text
package main import ( "context""fmt" openai "github.com/sashabaranov/go-openai" ) funcmain() { c:=openai.NewClient("your token") ctx:=context.Background() req:= openai.AudioRequest{ Model: openai.Whisper1, FilePath: "recording.mp3", } resp, err:=c.CreateTranscription(ctx, req) iferr!=nil { fmt.Printf("Transcription error: %v\n", err) return } fmt.Println(resp.Text) }
Audio Captions
package main import ( "context""fmt""os" openai "github.com/sashabaranov/go-openai" ) funcmain() { c:=openai.NewClient(os.Getenv("OPENAI_KEY")) req:= openai.AudioRequest{ Model: openai.Whisper1, FilePath: os.Args[1], Format: openai.AudioResponseFormatSRT, } resp, err:=c.CreateTranscription(context.Background(), req) iferr!=nil { fmt.Printf("Transcription error: %v\n", err) return } f, err:=os.Create(os.Args[1] +".srt") iferr!=nil { fmt.Printf("Could not open file: %v\n", err) return } deferf.Close() if_, err:=f.WriteString(resp.Text); err!=nil { fmt.Printf("Error writing to file: %v\n", err) return } }
DALL-E 2 image generation
package main import ( "bytes""context""encoding/base64""fmt" openai "github.com/sashabaranov/go-openai""image/png""os" ) funcmain() { c:=openai.NewClient("your token") ctx:=context.Background() // Sample image by linkreqUrl:= openai.ImageRequest{ Prompt: "Parrot on a skateboard performs a trick, cartoon style, natural light, high detail", Size: openai.CreateImageSize256x256, ResponseFormat: openai.CreateImageResponseFormatURL, N: 1, } respUrl, err:=c.CreateImage(ctx, reqUrl) iferr!=nil { fmt.Printf("Image creation error: %v\n", err) return } fmt.Println(respUrl.Data[0].URL) // Example image as base64reqBase64:= openai.ImageRequest{ Prompt: "Portrait of a humanoid parrot in a classic costume, high detail, realistic light, unreal engine", Size: openai.CreateImageSize256x256, ResponseFormat: openai.CreateImageResponseFormatB64JSON, N: 1, } respBase64, err:=c.CreateImage(ctx, reqBase64) iferr!=nil { fmt.Printf("Image creation error: %v\n", err) return } imgBytes, err:=base64.StdEncoding.DecodeString(respBase64.Data[0].B64JSON) iferr!=nil { fmt.Printf("Base64 decode error: %v\n", err) return } r:=bytes.NewReader(imgBytes) imgData, err:=png.Decode(r) iferr!=nil { fmt.Printf("PNG decode error: %v\n", err) return } file, err:=os.Create("example.png") iferr!=nil { fmt.Printf("File creation error: %v\n", err) return } deferfile.Close() iferr:=png.Encode(file, imgData); err!=nil { fmt.Printf("PNG encode error: %v\n", err) return } fmt.Println("The image was saved as example.png") }
Configuring proxy
config:=openai.DefaultConfig("token") proxyUrl, err:=url.Parse("http://localhost:{port}") iferr!=nil { panic(err) } transport:=&http.Transport{ Proxy: http.ProxyURL(proxyUrl), } config.HTTPClient=&http.Client{ Transport: transport, } c:=openai.NewClientWithConfig(config)
See also: https://pkg.go.dev/github.com/sashabaranov/go-openai#ClientConfig
ChatGPT support context
package main import ( "bufio""context""fmt""os""strings""github.com/sashabaranov/go-openai" ) funcmain() { client:=openai.NewClient("your token") messages:=make([]openai.ChatCompletionMessage, 0) reader:=bufio.NewReader(os.Stdin) fmt.Println("Conversation") fmt.Println("---------------------") for { fmt.Print("-> ") text, _:=reader.ReadString('\n') // convert CRLF to LFtext=strings.Replace(text, "\n", "", -1) messages=append(messages, openai.ChatCompletionMessage{ Role: openai.ChatMessageRoleUser, Content: text, }) resp, err:=client.CreateChatCompletion( context.Background(), openai.ChatCompletionRequest{ Model: openai.GPT3Dot5Turbo, Messages: messages, }, ) iferr!=nil { fmt.Printf("ChatCompletion error: %v\n", err) continue } content:=resp.Choices[0].Message.Contentmessages=append(messages, openai.ChatCompletionMessage{ Role: openai.ChatMessageRoleAssistant, Content: content, }) fmt.Println(content) } }
Azure OpenAI ChatGPT
package main import ( "context""fmt" openai "github.com/sashabaranov/go-openai" ) funcmain() { config:=openai.DefaultAzureConfig("your Azure OpenAI Key", "https://your Azure OpenAI Endpoint") // If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function// config.AzureModelMapperFunc = func(model string) string {// azureModelMapping := map[string]string{// "gpt-3.5-turbo": "your gpt-3.5-turbo deployment name",// }// return azureModelMapping[model]// }client:=openai.NewClientWithConfig(config) resp, err:=client.CreateChatCompletion( context.Background(), openai.ChatCompletionRequest{ Model: openai.GPT3Dot5Turbo, Messages: []openai.ChatCompletionMessage{ { Role: openai.ChatMessageRoleUser, Content: "Hello Azure OpenAI!", }, }, }, ) iferr!=nil { fmt.Printf("ChatCompletion error: %v\n", err) return } fmt.Println(resp.Choices[0].Message.Content) }
Embedding Semantic Similarity
package main import ( "context""log" openai "github.com/sashabaranov/go-openai" ) funcmain() { client:=openai.NewClient("your-token") // Create an EmbeddingRequest for the user queryqueryReq:= openai.EmbeddingRequest{ Input: []string{"How many chucks would a woodchuck chuck"}, Model: openai.AdaEmbeddingV2, } // Create an embedding for the user queryqueryResponse, err:=client.CreateEmbeddings(context.Background(), queryReq) iferr!=nil { log.Fatal("Error creating query embedding:", err) } // Create an EmbeddingRequest for the target texttargetReq:= openai.EmbeddingRequest{ Input: []string{"How many chucks would a woodchuck chuck if the woodchuck could chuck wood"}, Model: openai.AdaEmbeddingV2, } // Create an embedding for the target texttargetResponse, err:=client.CreateEmbeddings(context.Background(), targetReq) iferr!=nil { log.Fatal("Error creating target embedding:", err) } // Now that we have the embeddings for the user query and the target text, we// can calculate their similarity.queryEmbedding:=queryResponse.Data[0] targetEmbedding:=targetResponse.Data[0] similarity, err:=queryEmbedding.DotProduct(&targetEmbedding) iferr!=nil { log.Fatal("Error calculating dot product:", err) } log.Printf("The similarity score between the query and the target is %f", similarity) }
Azure OpenAI Embeddings
package main import ( "context""fmt" openai "github.com/sashabaranov/go-openai" ) funcmain() { config:=openai.DefaultAzureConfig("your Azure OpenAI Key", "https://your Azure OpenAI Endpoint") config.APIVersion="2023-05-15"// optional update to latest API version//If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function//config.AzureModelMapperFunc = func(model string) string {// azureModelMapping := map[string]string{// "gpt-3.5-turbo":"your gpt-3.5-turbo deployment name",// }// return azureModelMapping[model]//}input:="Text to vectorize"client:=openai.NewClientWithConfig(config) resp, err:=client.CreateEmbeddings( context.Background(), openai.EmbeddingRequest{ Input: []string{input}, Model: openai.AdaEmbeddingV2, }) iferr!=nil { fmt.Printf("CreateEmbeddings error: %v\n", err) return } vectors:=resp.Data[0].Embedding// []float32 with 1536 dimensionsfmt.Println(vectors[:10], "...", vectors[len(vectors)-10:]) }
JSON Schema for function calling
It is now possible for chat completion to choose to call a function for more information (see developer docs here).
In order to describe the type of functions that can be called, a JSON schema must be provided. Many JSON schema libraries exist and are more advanced than what we can offer in this library, however we have included a simple jsonschema
package for those who want to use this feature without formatting their own JSON schema payload.
The developer documents give this JSON schema definition as an example:
{ "name":"get_current_weather", "description":"Get the current weather in a given location", "parameters":{ "type":"object", "properties":{ "location":{ "type":"string", "description":"The city and state, e.g. San Francisco, CA" }, "unit":{ "type":"string", "enum":[ "celsius", "fahrenheit" ] } }, "required":[ "location" ] } }
Using the jsonschema
package, this schema could be created using structs as such:
FunctionDefinition{ Name: "get_current_weather", Parameters: jsonschema.Definition{ Type: jsonschema.Object, Properties: map[string]jsonschema.Definition{ "location": { Type: jsonschema.String, Description: "The city and state, e.g. San Francisco, CA", }, "unit": { Type: jsonschema.String, Enum: []string{"celsius", "fahrenheit"}, }, }, Required: []string{"location"}, }, }
The Parameters
field of a FunctionDefinition
can accept either of the above styles, or even a nested struct from another library (as long as it can be marshalled into JSON).
Error handling
Open-AI maintains clear documentation on how to handle API errors
example:
e := &openai.APIError{} if errors.As(err, &e) { switch e.HTTPStatusCode { case 401: // invalid auth or key (do not retry) case 429: // rate limiting or engine overload (wait and retry) case 500: // openai server error (retry) default: // unhandled } }
Fine Tune Model
package main import ( "context""fmt""github.com/sashabaranov/go-openai" ) funcmain() { client:=openai.NewClient("your token") ctx:=context.Background() // create a .jsonl file with your training data for conversational model// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}// chat models are trained using the following file format:// {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}// {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}// {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}// you can use openai cli tool to validate the data// For more info - https://platform.openai.com/docs/guides/fine-tuningfile, err:=client.CreateFile(ctx, openai.FileRequest{ FilePath: "training_prepared.jsonl", Purpose: "fine-tune", }) iferr!=nil { fmt.Printf("Upload JSONL file error: %v\n", err) return } // create a fine tuning job// Streams events until the job is done (this often takes minutes, but can take hours if there are many jobs in the queue or your dataset is large)// use below get method to know the status of your modelfineTuningJob, err:=client.CreateFineTuningJob(ctx, openai.FineTuningJobRequest{ TrainingFile: file.ID, Model: "davinci-002", // gpt-3.5-turbo-0613, babbage-002. }) iferr!=nil { fmt.Printf("Creating new fine tune model error: %v\n", err) return } fineTuningJob, err=client.RetrieveFineTuningJob(ctx, fineTuningJob.ID) iferr!=nil { fmt.Printf("Getting fine tune model error: %v\n", err) return } fmt.Println(fineTuningJob.FineTunedModel) // once the status of fineTuningJob is `succeeded`, you can use your fine tune model in Completion Request or Chat Completion Request// resp, err := client.CreateCompletion(ctx, openai.CompletionRequest{// Model: fineTuningJob.FineTunedModel,// Prompt: "your prompt",// })// if err != nil {// fmt.Printf("Create completion error %v\n", err)// return// }//// fmt.Println(resp.Choices[0].Text) }
Structured Outputs
package main import ( "context""fmt""log""github.com/sashabaranov/go-openai""github.com/sashabaranov/go-openai/jsonschema" ) funcmain() { client:=openai.NewClient("your token") ctx:=context.Background() typeResultstruct { Steps []struct { Explanationstring`json:"explanation"`Outputstring`json:"output"` } `json:"steps"`FinalAnswerstring`json:"final_answer"` } varresultResultschema, err:=jsonschema.GenerateSchemaForType(result) iferr!=nil { log.Fatalf("GenerateSchemaForType error: %v", err) } resp, err:=client.CreateChatCompletion(ctx, openai.ChatCompletionRequest{ Model: openai.GPT4oMini, Messages: []openai.ChatCompletionMessage{ { Role: openai.ChatMessageRoleSystem, Content: "You are a helpful math tutor. Guide the user through the solution step by step.", }, { Role: openai.ChatMessageRoleUser, Content: "how can I solve 8x + 7 = -23", }, }, ResponseFormat: &openai.ChatCompletionResponseFormat{ Type: openai.ChatCompletionResponseFormatTypeJSONSchema, JSONSchema: &openai.ChatCompletionResponseFormatJSONSchema{ Name: "math_reasoning", Schema: schema, Strict: true, }, }, }) iferr!=nil { log.Fatalf("CreateChatCompletion error: %v", err) } err=schema.Unmarshal(resp.Choices[0].Message.Content, &result) iferr!=nil { log.Fatalf("Unmarshal schema error: %v", err) } fmt.Println(result) }
Why don't we get the same answer when specifying a temperature field of 0 and asking the same question?
Even when specifying a temperature field of 0, it doesn't guarantee that you'll always get the same response. Several factors come into play.
- Go OpenAI Behavior: When you specify a temperature field of 0 in Go OpenAI, the omitempty tag causes that field to be removed from the request. Consequently, the OpenAI API applies the default value of 1.
- Token Count for Input/Output: If there's a large number of tokens in the input and output, setting the temperature to 0 can still result in non-deterministic behavior. In particular, when using around 32k tokens, the likelihood of non-deterministic behavior becomes highest even with a temperature of 0.
Due to the factors mentioned above, different answers may be returned even for the same question.
Workarounds:
- As of November 2023, use the new
seed
parameter in conjunction with thesystem_fingerprint
response field, alongside Temperature management. - Try using
math.SmallestNonzeroFloat32
: By specifyingmath.SmallestNonzeroFloat32
in the temperature field instead of 0, you can mimic the behavior of setting it to 0. - Limiting Token Count: By limiting the number of tokens in the input and output and especially avoiding large requests close to 32k tokens, you can reduce the risk of non-deterministic behavior.
By adopting these strategies, you can expect more consistent results.
Related Issues:
omitempty option of request struct will generate incorrect request when parameter is 0.
No, Go OpenAI does not offer a feature to count tokens, and there are no plans to provide such a feature in the future. However, if there's a way to implement a token counting feature with zero dependencies, it might be possible to merge that feature into Go OpenAI. Otherwise, it would be more appropriate to implement it in a dedicated library or repository.
For counting tokens, you might find the following links helpful:
Related Issues:
Is it possible to join the implementation of GPT3 Tokenizer
By following Contributing Guidelines, we hope to ensure that your contributions are made smoothly and efficiently.
We want to take a moment to express our deepest gratitude to the contributors and sponsors of this project:
To all of you: thank you. You've helped us achieve more than we ever imagined possible. Can't wait to see where we go next, together!