Skip to content

[Safety Checker] Add Safety Checker Module#36

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Aug 22, 2022
30 changes: 28 additions & 2 deletions scripts/txt2img.py
Original file line numberDiff line numberDiff line change
Expand Up@@ -16,12 +16,31 @@
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler

from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor

# load safety model
safety_model_id = "CompVis/stable-diffusion-v-1-3"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, use_auth_token=True)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, use_auth_token=True)

def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())


def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]

return pil_images


def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
Expand DownExpand Up@@ -247,16 +266,23 @@ def main():

x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()

x_image = x_samples_ddim
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)

x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 2, 1)

if not opt.skip_save:
for x_sample in x_samples_ddim:
for x_sample in x_checked_image_torch:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1

if not opt.skip_grid:
all_samples.append(x_samples_ddim)
all_samples.append(x_checked_image_torch)

if not opt.skip_grid:
# additionally, save as grid
Expand Down
close