Recognize Landmarks with Firebase ML on Android

You can use Firebase ML to recognize well-known landmarks in an image.

Before you begin

  1. If you haven't already, add Firebase to your Android project.
  2. In your module (app-level) Gradle file (usually <project>/<app-module>/build.gradle.kts or <project>/<app-module>/build.gradle), add the dependency for the Firebase ML Vision library for Android. We recommend using the Firebase Android BoM to control library versioning.
    dependencies{// Import the BoM for the Firebase platformimplementation(platform("com.google.firebase:firebase-bom:33.12.0"))// Add the dependency for the Firebase ML Vision library// When using the BoM, you don't specify versions in Firebase library dependenciesimplementation'com.google.firebase:firebase-ml-vision'}

    By using the Firebase Android BoM, your app will always use compatible versions of Firebase Android libraries.

    (Alternative)  Add Firebase library dependencies without using the BoM

    If you choose not to use the Firebase BoM, you must specify each Firebase library version in its dependency line.

    Note that if you use multiple Firebase libraries in your app, we strongly recommend using the BoM to manage library versions, which ensures that all versions are compatible.

    dependencies{// Add the dependency for the Firebase ML Vision library// When NOT using the BoM, you must specify versions in Firebase library dependenciesimplementation'com.google.firebase:firebase-ml-vision:24.1.0'}
    Looking for a Kotlin-specific library module? Starting in October 2023 (Firebase BoM 32.5.0), both Kotlin and Java developers can depend on the main library module (for details, see the FAQ about this initiative).
  3. If you haven't already enabled Cloud-based APIs for your project, do so now:

    1. Open the Firebase ML APIs page in the Firebase console.
    2. If you haven't already upgraded your project to the pay-as-you-go Blaze pricing plan, click Upgrade to do so. (You'll be prompted to upgrade only if your project isn't on the Blaze pricing plan.)

      Only projects on the Blaze pricing plan can use Cloud-based APIs.

    3. If Cloud-based APIs aren't already enabled, click Enable Cloud-based APIs.

Configure the landmark detector

By default, the Cloud detector uses the STABLE version of the model and returns up to 10 results. If you want to change either of these settings, specify them with a FirebaseVisionCloudDetectorOptions object.

For example, to change both of the default settings, build a FirebaseVisionCloudDetectorOptions object as in the following example:

Kotlin

valoptions=FirebaseVisionCloudDetectorOptions.Builder().setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL).setMaxResults(15).build()

Java

FirebaseVisionCloudDetectorOptionsoptions=newFirebaseVisionCloudDetectorOptions.Builder().setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL).setMaxResults(15).build();

To use the default settings, you can use FirebaseVisionCloudDetectorOptions.DEFAULT in the next step.

Run the landmark detector

To recognize landmarks in an image, create a FirebaseVisionImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the FirebaseVisionImage object to the FirebaseVisionCloudLandmarkDetector's detectInImage method.

  1. Create a FirebaseVisionImage object from your image.

    • To create a FirebaseVisionImage object from a media.Image object, such as when capturing an image from a device's camera, pass the media.Image object and the image's rotation to FirebaseVisionImage.fromMediaImage().

      If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you, so you just need to convert the rotation to one of Firebase ML's ROTATION_ constants before calling FirebaseVisionImage.fromMediaImage():

      Kotlin

      privateclassYourImageAnalyzer:ImageAnalysis.Analyzer{privatefundegreesToFirebaseRotation(degrees:Int):Int=when(degrees){0->FirebaseVisionImageMetadata.ROTATION_090->FirebaseVisionImageMetadata.ROTATION_90180->FirebaseVisionImageMetadata.ROTATION_180270->FirebaseVisionImageMetadata.ROTATION_270else->throwException("Rotation must be 0, 90, 180, or 270.")}overridefunanalyze(imageProxy:ImageProxy?,degrees:Int){valmediaImage=imageProxy?.imagevalimageRotation=degreesToFirebaseRotation(degrees)if(mediaImage!=null){valimage=FirebaseVisionImage.fromMediaImage(mediaImage,imageRotation)// Pass image to an ML Vision API// ...}}}

      Java

      privateclassYourAnalyzerimplementsImageAnalysis.Analyzer{privateintdegreesToFirebaseRotation(intdegrees){switch(degrees){case0:returnFirebaseVisionImageMetadata.ROTATION_0;case90:returnFirebaseVisionImageMetadata.ROTATION_90;case180:returnFirebaseVisionImageMetadata.ROTATION_180;case270:returnFirebaseVisionImageMetadata.ROTATION_270;default:thrownewIllegalArgumentException("Rotation must be 0, 90, 180, or 270.");}}@Overridepublicvoidanalyze(ImageProxyimageProxy,intdegrees){if(imageProxy==null||imageProxy.getImage()==null){return;}ImagemediaImage=imageProxy.getImage();introtation=degreesToFirebaseRotation(degrees);FirebaseVisionImageimage=FirebaseVisionImage.fromMediaImage(mediaImage,rotation);// Pass image to an ML Vision API// ...}}

      If you don't use a camera library that gives you the image's rotation, you can calculate it from the device's rotation and the orientation of camera sensor in the device:

      Kotlin

      privatevalORIENTATIONS=SparseIntArray()init{ORIENTATIONS.append(Surface.ROTATION_0,90)ORIENTATIONS.append(Surface.ROTATION_90,0)ORIENTATIONS.append(Surface.ROTATION_180,270)ORIENTATIONS.append(Surface.ROTATION_270,180)}/** * Get the angle by which an image must be rotated given the device's current * orientation. */@RequiresApi(api=Build.VERSION_CODES.LOLLIPOP)@Throws(CameraAccessException::class)privatefungetRotationCompensation(cameraId:String,activity:Activity,context:Context):Int{// Get the device's current rotation relative to its "native" orientation.// Then, from the ORIENTATIONS table, look up the angle the image must be// rotated to compensate for the device's rotation.valdeviceRotation=activity.windowManager.defaultDisplay.rotationvarrotationCompensation=ORIENTATIONS.get(deviceRotation)// On most devices, the sensor orientation is 90 degrees, but for some// devices it is 270 degrees. For devices with a sensor orientation of// 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.valcameraManager=context.getSystemService(CAMERA_SERVICE)asCameraManagervalsensorOrientation=cameraManager.getCameraCharacteristics(cameraId).get(CameraCharacteristics.SENSOR_ORIENTATION)!!rotationCompensation=(rotationCompensation+sensorOrientation+270)%360// Return the corresponding FirebaseVisionImageMetadata rotation value.valresult:Intwhen(rotationCompensation){0->result=FirebaseVisionImageMetadata.ROTATION_090->result=FirebaseVisionImageMetadata.ROTATION_90180->result=FirebaseVisionImageMetadata.ROTATION_180270->result=FirebaseVisionImageMetadata.ROTATION_270else->{result=FirebaseVisionImageMetadata.ROTATION_0Log.e(TAG,"Bad rotation value: $rotationCompensation")}}returnresult}

      Java

      privatestaticfinalSparseIntArrayORIENTATIONS=newSparseIntArray();static{ORIENTATIONS.append(Surface.ROTATION_0,90);ORIENTATIONS.append(Surface.ROTATION_90,0);ORIENTATIONS.append(Surface.ROTATION_180,270);ORIENTATIONS.append(Surface.ROTATION_270,180);}/** * Get the angle by which an image must be rotated given the device's current * orientation. */@RequiresApi(api=Build.VERSION_CODES.LOLLIPOP)privateintgetRotationCompensation(StringcameraId,Activityactivity,Contextcontext)throwsCameraAccessException{// Get the device's current rotation relative to its "native" orientation.// Then, from the ORIENTATIONS table, look up the angle the image must be// rotated to compensate for the device's rotation.intdeviceRotation=activity.getWindowManager().getDefaultDisplay().getRotation();introtationCompensation=ORIENTATIONS.get(deviceRotation);// On most devices, the sensor orientation is 90 degrees, but for some// devices it is 270 degrees. For devices with a sensor orientation of// 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.CameraManagercameraManager=(CameraManager)context.getSystemService(CAMERA_SERVICE);intsensorOrientation=cameraManager.getCameraCharacteristics(cameraId).get(CameraCharacteristics.SENSOR_ORIENTATION);rotationCompensation=(rotationCompensation+sensorOrientation+270)%360;// Return the corresponding FirebaseVisionImageMetadata rotation value.intresult;switch(rotationCompensation){case0:result=FirebaseVisionImageMetadata.ROTATION_0;break;case90:result=FirebaseVisionImageMetadata.ROTATION_90;break;case180:result=FirebaseVisionImageMetadata.ROTATION_180;break;case270:result=FirebaseVisionImageMetadata.ROTATION_270;break;default:result=FirebaseVisionImageMetadata.ROTATION_0;Log.e(TAG,"Bad rotation value: "+rotationCompensation);}returnresult;}

      Then, pass the media.Image object and the rotation value to FirebaseVisionImage.fromMediaImage():

      Kotlin

      valimage=FirebaseVisionImage.fromMediaImage(mediaImage,rotation)

      Java

      FirebaseVisionImageimage=FirebaseVisionImage.fromMediaImage(mediaImage,rotation);
    • To create a FirebaseVisionImage object from a file URI, pass the app context and file URI to FirebaseVisionImage.fromFilePath(). This is useful when you use an ACTION_GET_CONTENT intent to prompt the user to select an image from their gallery app.

      Kotlin

      valimage:FirebaseVisionImagetry{image=FirebaseVisionImage.fromFilePath(context,uri)}catch(e:IOException){e.printStackTrace()}

      Java

      FirebaseVisionImageimage;try{image=FirebaseVisionImage.fromFilePath(context,uri);}catch(IOExceptione){e.printStackTrace();}
    • To create a FirebaseVisionImage object from a ByteBuffer or a byte array, first calculate the image rotation as described above for media.Image input.

      Then, create a FirebaseVisionImageMetadata object that contains the image's height, width, color encoding format, and rotation:

      Kotlin

      valmetadata=FirebaseVisionImageMetadata.Builder().setWidth(480)// 480x360 is typically sufficient for.setHeight(360)// image recognition.setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21).setRotation(rotation).build()

      Java

      FirebaseVisionImageMetadatametadata=newFirebaseVisionImageMetadata.Builder().setWidth(480)// 480x360 is typically sufficient for.setHeight(360)// image recognition.setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21).setRotation(rotation).build();

      Use the buffer or array, and the metadata object, to create a FirebaseVisionImage object:

      Kotlin

      valimage=FirebaseVisionImage.fromByteBuffer(buffer,metadata)// Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImageimage=FirebaseVisionImage.fromByteBuffer(buffer,metadata);// Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • To create a FirebaseVisionImage object from a Bitmap object:

      Kotlin

      valimage=FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImageimage=FirebaseVisionImage.fromBitmap(bitmap);
      The image represented by the Bitmap object must be upright, with no additional rotation required.

  2. Get an instance of FirebaseVisionCloudLandmarkDetector:

    Kotlin

    valdetector=FirebaseVision.getInstance().visionCloudLandmarkDetector// Or, to change the default settings:// val detector = FirebaseVision.getInstance()// .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetectordetector=FirebaseVision.getInstance().getVisionCloudLandmarkDetector();// Or, to change the default settings:// FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()// .getVisionCloudLandmarkDetector(options);
  3. Finally, pass the image to the detectInImage method:

    Kotlin

    valresult=detector.detectInImage(image).addOnSuccessListener{firebaseVisionCloudLandmarks-> // Task completed successfully// ...}.addOnFailureListener{e-> // Task failed with an exception// ...}

    Java

    Task<List<FirebaseVisionCloudLandmark>>result=detector.detectInImage(image).addOnSuccessListener(newOnSuccessListener<List<FirebaseVisionCloudLandmark>>(){@OverridepublicvoidonSuccess(List<FirebaseVisionCloudLandmark>firebaseVisionCloudLandmarks){// Task completed successfully// ...}}).addOnFailureListener(newOnFailureListener(){@OverridepublicvoidonFailure(@NonNullExceptione){// Task failed with an exception// ...}});

Get information about the recognized landmarks

If the landmark recognition operation succeeds, a list of FirebaseVisionCloudLandmark objects will be passed to the success listener. Each FirebaseVisionCloudLandmark object represents a landmark that was recognized in the image. For each landmark, you can get its bounding coordinates in the input image, the landmark's name, its latitude and longitude, its Knowledge Graph entity ID (if available), and the confidence score of the match. For example:

Kotlin

for(landmarkinfirebaseVisionCloudLandmarks){valbounds=landmark.boundingBoxvallandmarkName=landmark.landmarkvalentityId=landmark.entityIdvalconfidence=landmark.confidence// Multiple locations are possible, e.g., the location of the depicted// landmark and the location the picture was taken.for(locinlandmark.locations){vallatitude=loc.latitudevallongitude=loc.longitude}}

Java

for(FirebaseVisionCloudLandmarklandmark:firebaseVisionCloudLandmarks){Rectbounds=landmark.getBoundingBox();StringlandmarkName=landmark.getLandmark();StringentityId=landmark.getEntityId();floatconfidence=landmark.getConfidence();// Multiple locations are possible, e.g., the location of the depicted// landmark and the location the picture was taken.for(FirebaseVisionLatLngloc:landmark.getLocations()){doublelatitude=loc.getLatitude();doublelongitude=loc.getLongitude();}}

Next steps