"Tools" has been fully upgraded to the "Plugins". For more details, please refer to . The content below has been archived.
Here, we will use GoogleSearch as an example to demonstrate how to quickly integrate a tool.
1. Prepare the Tool Provider yaml
Introduction
This yaml declares a new tool provider, and includes information like the provider's name, icon, author, and other details that are fetched by the frontend for display.
Example
We need to create a google module (folder) under core/tools/provider/builtin, and create google.yaml. The name must be consistent with the module name.
Subsequently, all operations related to this tool will be carried out under this module.
identity: # Basic information of the tool provider author: Dify # Author name: google # Name, unique, no duplication with other providers label: # Label for frontend display en_US: Google # English label zh_Hans: Google # Chinese label ja_JP: Google # Japanese label pt_BR: Google # Portuguese label description: # Description for frontend display en_US: Google # English description zh_Hans: Google # Chinese description ja_JP: Google # Japanese description pt_BR: Google # Portuguese description icon: icon.svg # Icon, needs to be placed in the _assets folder of the current module
The identity field is mandatory, it contains the basic information of the tool provider, including author, name, label, description, icon, etc.
The icon needs to be placed in the _assets folder of the current module, you can refer to: api/core/tools/provider/builtin/google/_assets/icon.svg
Google, as a third-party tool, uses the API provided by SerpApi, which requires an API Key to use. This means that this tool needs a credential to use. For tools like wikipedia, there is no need to fill in the credential field, you can refer to: api/core/tools/provider/builtin/wikipedia/wikipedia.yaml
identity: author: Dify name: wikipedia label: en_US: Wikipedia zh_Hans: 维基百科 ja_JP: Wikipedia pt_BR: Wikipedia description: en_US: Wikipedia is a free online encyclopedia, created and edited by volunteers around the world. zh_Hans: 维基百科是一个由全世界的志愿者创建和编辑的免费在线百科全书。 ja_JP: Wikipediaは、世界中のボランティアによって作成、編集されている無料のオンライン百科事典です。 pt_BR: A Wikipédia é uma enciclopédia online gratuita, criada e editada por voluntários ao redor do mundo. icon: icon.svgcredentials_for_provider:
After configuring the credential field, the effect is as follows:
identity: author: Dify name: google label: en_US: Google zh_Hans: Google ja_JP: Google pt_BR: Google description: en_US: Google zh_Hans: Google ja_JP: Google pt_BR: Google icon: icon.svgcredentials_for_provider: # Credential field serpapi_api_key: # Credential field name type: secret-input # Credential field type required: true # Required or not label: # Credential field label en_US: SerpApi API key # English label zh_Hans: SerpApi API key # Chinese label ja_JP: SerpApi API key # Japanese label pt_BR: chave de API SerpApi # Portuguese label placeholder: # Credential field placeholder en_US: Please input your SerpApi API key # English placeholder zh_Hans: 请输入你的 SerpApi API key # Chinese placeholder ja_JP: SerpApi API keyを入力してください # Japanese placeholder pt_BR: Por favor, insira sua chave de API SerpApi # Portuguese placeholder help: # Credential field help text en_US: Get your SerpApi API key from SerpApi # English help text zh_Hans: 从 SerpApi 获取你的 SerpApi API key # Chinese help text ja_JP: SerpApiからSerpApi APIキーを取得する # Japanese help text pt_BR: Obtenha sua chave de API SerpApi da SerpApi # Portuguese help text url: https://serpapi.com/manage-api-key # Credential field help link
type: Credential field type, currently can be either secret-input, text-input, or select , corresponding to password input box, text input box, and drop-down box, respectively. If set to secret-input, it will mask the input content on the frontend, and the backend will encrypt the input content.
3. Prepare Tool yaml
A provider can have multiple tools, each tool needs a yaml file to describe, this file contains the basic information, parameters, output, etc. of the tool.
Still taking GoogleSearch as an example, we need to create a tools module under the google module, and create tools/google_search.yaml, the content is as follows.
identity: # Basic information of the tool name: google_search # Tool name, unique, no duplication with other tools author: Dify # Author label: # Label for frontend display en_US: GoogleSearch # English label zh_Hans: 谷歌搜索 # Chinese label ja_JP: Google検索 # Japanese label pt_BR: Pesquisa Google # Portuguese labeldescription: # Description for frontend display human: # Introduction for frontend display, supports multiple languages en_US: A tool for performing a Google SERP search and extracting snippets and webpages.Input should be a search query. zh_Hans: 一个用于执行 Google SERP 搜索并提取片段和网页的工具。输入应该是一个搜索查询。 ja_JP: Google SERP 検索を実行し、スニペットと Web ページを抽出するためのツール。入力は検索クエリである必要があります。 pt_BR: Uma ferramenta para realizar pesquisas no Google SERP e extrair snippets e páginas da web. A entrada deve ser uma consulta de pesquisa. llm: A tool for performing a Google SERP search and extracting snippets and webpages.Input should be a search query. # Introduction passed to LLM, in order to make LLM better understand this tool, we suggest to write as detailed information about this tool as possible here, so that LLM can understand and use this toolparameters: # Parameter list - name: query # Parameter name type: string # Parameter type required: true # Required or not label: # Parameter label en_US: Query string # English label zh_Hans: 查询语句 # Chinese label ja_JP: クエリステートメント # Japanese label pt_BR: Declaração de consulta # Portuguese label human_description: # Introduction for frontend display, supports multiple languages en_US: used for searching zh_Hans: 用于搜索网页内容 ja_JP: ネットの検索に使用する pt_BR: usado para pesquisar llm_description: key words for searching # Introduction passed to LLM, similarly, in order to make LLM better understand this parameter, we suggest to write as detailed information about this parameter as possible here, so that LLM can understand this parameter form: llm # Form type, llm means this parameter needs to be inferred by Agent, the frontend will not display this parameter - name: result_type type: select # Parameter type required: true options: # Drop-down box options - value: text label: en_US: text zh_Hans: 文本 ja_JP: テキスト pt_BR: texto - value: link label: en_US: link zh_Hans: 链接 ja_JP: リンク pt_BR: link default: link label: en_US: Result type zh_Hans: 结果类型 ja_JP: 結果タイプ pt_BR: tipo de resultado human_description: en_US: used for selecting the result type, text or link zh_Hans: 用于选择结果类型,使用文本还是链接进行展示 ja_JP: 結果の種類、テキスト、リンクを選択するために使用されます pt_BR: usado para selecionar o tipo de resultado, texto ou link form: form # Form type, form means this parameter needs to be filled in by the user on the frontend before the conversation starts
The identity field is mandatory, it contains the basic information of the tool, including name, author, label, description, etc.
parameters Parameter list
name Parameter name, unique, no duplication with other parameters
type Parameter type, currently supports string, number, boolean, select four types, corresponding to string, number, boolean, drop-down box
required Required or not
In llm mode, if the parameter is required, the Agent is required to infer this parameter
In form mode, if the parameter is required, the user is required to fill in this parameter on the frontend before the conversation starts
options Parameter options
In llm mode, Dify will pass all options to LLM, LLM can infer based on these options
In form mode, when type is select, the frontend will display these options
default Default value
label Parameter label, for frontend display
human_description Introduction for frontend display, supports multiple languages
llm_description Introduction passed to LLM, in order to make LLM better understand this parameter, we suggest to write as detailed information about this parameter as possible here, so that LLM can understand this parameter
form Form type, currently supports llm, form two types, corresponding to Agent self-inference and frontend filling
4. Add Tool Logic
After completing the tool configuration, we can start writing the tool code that defines how it is invoked.
Create google_search.py under the google/tools module, the content is as follows.
The overall logic of the tool is in the _invoke method, this method accepts two parameters: user_id and tool_parameters, which represent the user ID and tool parameters respectively
Return Data
When the tool returns, you can choose to return one message or multiple messages, here we return one message, using create_text_message and create_link_message can create a text message or a link message.
5. Add Provider Code
Finally, we need to create a provider class under the provider module to implement the provider's credential verification logic. If the credential verification fails, it will throw a ToolProviderCredentialValidationError exception.
Create google.py under the google module, the content is as follows.
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderTypefrom core.tools.tool.tool import Toolfrom core.tools.provider.builtin_tool_provider import BuiltinToolProviderControllerfrom core.tools.errors import ToolProviderCredentialValidationErrorfrom core.tools.provider.builtin.google.tools.google_search import GoogleSearchToolfrom typing import Any, Dictclass GoogleProvider(BuiltinToolProviderController): def _validate_credentials(self, credentials: Dict[str, Any]) -> None: try: # 1. Here you need to instantiate a GoogleSearchTool with GoogleSearchTool(), it will automatically load the yaml configuration of GoogleSearchTool, but at this time it does not have credential information inside # 2. Then you need to use the fork_tool_runtime method to pass the current credential information to GoogleSearchTool # 3. Finally, invoke it, the parameters need to be passed according to the parameter rules configured in the yaml of GoogleSearchTool GoogleSearchTool().fork_tool_runtime( meta={ "credentials": credentials, } ).invoke( user_id='', tool_parameters={ "query": "test", "result_type": "link" }, ) except Exception as e: raise ToolProviderCredentialValidationError(str(e))
Completion
After the above steps are completed, we can see this tool on the frontend, and it can be used in the Agent.
Of course, because google_search needs a credential, before using it, you also need to input your credentials on the frontend.