Problem description:
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up: Could you do both operations in O(1) time complexity?
I passed 17/18 test cases with this and failed the last one due to this exceeding time constraints. I'm guessing something here isn't O(1)? I've spent hours but can't identify it.
class LRUCache { Map<Integer, Integer> cache; Queue<Integer> q; int capacity; public LRUCache(int capacity) { cache = new HashMap<>(); q = new LinkedList<Integer>(); this.capacity = capacity; } public int get(int key) { if (cache.get(key) == null || cache.get(key) == -1) return -1; int value = cache.get(key); q.remove(key); q.add(key); System.out.println("get() - key: " + key + " value: " + value); return value; } public void put(int key, int value) { if (cache.get(key) == null || cache.get(key) == -1) { if (q.size() >= capacity) { evict(); } } else { q.remove(key); } q.add(key); cache.put(key, value); System.out.println("put()...key: " + key + " queue size: " + q.size()); } private void evict() { int toRemove = q.remove(); cache.put(toRemove, -1); System.out.println("Evict: " + toRemove + " queue size: " + q.size()); } } /** * Your LRUCache object will be instantiated and called as such: * LRUCache obj = new LRUCache(capacity); * int param_1 = obj.get(key); * obj.put(key,value); */